• Title/Summary/Keyword: Hybrid propulsion system

Search Result 155, Processing Time 0.033 seconds

A Study on Proposing Practicable Configurations against Propeller Racing for SOFC/GT Hybrid System in Ships (프로펠러 레이싱에 대비한 SOFC/GT 하이브리드시스템의 대책 방안에 관한 기초적 연구)

  • Kim, Myoung-Hwan;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.256-261
    • /
    • 2008
  • The purpose of this study is to propose practicable configurations against Rapid Load Down like propeller racing of ships which have been using SOFC/GT hybrid system on board. This paper suggests four kinds of countermeasures against propeller racing. The types A and B keep a fixed load of SOFC and save a surplus electric power to a storage system. In types of C and D, the load of SOFC is changed with the propeller racing. The best desirable countermeasure for Rapid Load Down depends upon the size of the ship, the propulsion power, and the characteristics of the engine system.

Experimental Evaluation for Hydrodynamic Performance of a Hybrid Supported Type Fast Craft

  • Yang, S.I.;Koh, C.D.;Ahn, J.W.;Kim, Y.G.;Lee, J.-T.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.4
    • /
    • pp.34-44
    • /
    • 2000
  • This paper deals with the sea trial results of a fast craft with the hybrid supported type hul form. waterjet propulsion system and motion control system. The hybrid-type container ship operable in the sea with a wave height of y6 m, a speed of 50 knots and a payload of 1,500 tons were designed. A 1/8 scale 10 m- long test craft was constructed and tested in open seas. The hydrodynamic performance such as speed, turning, motion control in waves and waterjet thrush was analyzed.

  • PDF

Characteritic Analysis of Hybrid Levitation and Propulsion System for Super-Speed Maglev (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 특성 해석)

  • Cho, Han-Wook;Lee, Jong-Min;Han, Hyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.623_624
    • /
    • 2009
  • This paper deals with the characteristic analysis of electro-magnet (EM)-permanent magnet (PM) hybrid levitation and propulsion device for magnetically levitated (maglev) vehicles. Several machine characteristics such as levitation force with/without control current and thrust are described. In order to verify the analysis results and feasibility of high-speed operation of the maglev vehicle, real-scale static test set is implemented and tested.

  • PDF

Design of Hybrid Type Levitation and Propulsion System for High-Speed Maglev (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템 설계)

  • Cho, Han-Wook;Han, Hyung-Suk;Lee, Jong-Min;Kim, Bong-Sup;Rho, Kyu-Suk;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.94-96
    • /
    • 2009
  • This paper deals with the design considerations of electro-magnet (EM)-permanent magnet (PM) hybrid levitation and propulsion device for magnetically levitated (maglev) vehicles. Several design considerations such as machine structure, manufacturing, and control strategy are described. In order to verify the design scheme and feasibility of control strategy, dynamic test set is implemented and tested.

  • PDF

A Electric Power Source Modeling and Simulation for Electric Propulsion Systems of a Fuel Cell Powered Small UAV (소형 연료전지 무인기의 전기추진시스템용 전력원 모델링 및 시뮬레이션)

  • Lee, Bo-Hwa;Park, Poo-Min;Kim, Chun-Taek;Kim, Sung-Yug;Yang, Soo-Seok;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.959-965
    • /
    • 2011
  • A modeling and power simulation of a small UAV's electric propulsion systems is described. Each power source is modeled and simulated in Matlab/Simulink and it is compared flight test data during 4 hr 30 min with simulation results about 200 W electric propulsion system using fuel cell and battery as a main power sources. In result, it is properly simulated performance and dynamic characteristic of each electric power source. Through this, it is revealed that the simulation is available as a means of predicting power characteristic variation for electric propulsion systems of different class.

Comparison of Combustion Characteristic with GN2O and GOX as Oxidizer in Hybrid Rocket (하이브리드 로켓의 산화제 종류에 따른 고체연료 연소특성 비교)

  • Lee, Jung-Pyo;Cho, Sung-Bong;Kim, Soo-Jong;Yoon, Sang-Kyu;Park, Su-Hayng;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.223-227
    • /
    • 2006
  • In this study, the combustion characteristics was studied with various oxidizer in hybrid propulsion system. In this experiments $GN_2O$ and GOX were used as oxidizer, and PE was used as fuel. The combustion behavior was explained by flame temperature with mass O/F ratio, and the use of $GN_2O$ as the oxidizer caused a increase in combustion efficiency with GOX in the same hybrid motor. The mass flow rate of gaseous oxidizer was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $0.0138{\sim}0.0427kg/sec$. As result, the empirical relation for oxidizer type was represented by mass flux of solid fuel, it was obtained with mass transfer number, and mass flux of oxidizer.

  • PDF

A Study on Combustion Characteristic of HTPB in Hybrid Rocket (하이브리드 로켓의 HTPB의 연소특성에 관한 연구)

  • Lee, Jung-Pyo;Cho, Sung-Bong;Kim, Soo-Jong;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gae;Choi, Sung-Han;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.203-207
    • /
    • 2007
  • In this study, the combustion characteristics of HTPB was studied in hybrid propulsion system. In this experiments HTPB was used as fuel, GOX was used as oxidizer. The mass flow rate of GOX was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $13.8{\sim}42.7g/sec$. The experimental result of HTPB was compared with the other studies of HTPB, and the combustion performance of HTPB was analyzed with that of PE. As a result, the homing rate and efficiency of HTPB as fuel were better than that of PE in the same hybrid motor.

  • PDF

Feasibility Study of a Series Hybrid-Electric Propulsion System for a Fixed Wing VTOL Unmanned Aerial Vehicle (고정익 수직이착륙 무인항공기를 위한 하이브리드-전기 추진시스템의 타당성 연구)

  • Kim, Boseong;Bak, Jeonggyu;Yun, Senghyun;Cho, Sooyoung;Ha, Juhyung;Park, Gyusung;Lee, Geunho;Won, Sunghong;Moon, Changmo;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1097-1107
    • /
    • 2015
  • General VTOL aircraft uses gas turbine engine which has high power to weight ratio. However, in the VTOL UAV in small sector, the gas turbine as a prime mover is not adequate because of the limitation of the high fuel consumption ratio of the gas turbine. In this research, The Series Hybrid-Electric Propulsion System(SHEPS) has been proposed and technology survey & comparison analysis has conducted to constitute propulsion system for engine, electric motor and battery. To achieve this object a 65kg-class P-UAV from "Company I" was used. And to estimate the validity of power control algorithm and developed power management control, Matlab/simulink$^{(R)}$ has been used for the simulation. As a result, the developed algorithm worked comparatively well and the research has predicted that SHEPS was satisfied enough for 7 hour of endurance for mission profile.

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF