• Title/Summary/Keyword: Hybrid power module

Search Result 111, Processing Time 0.021 seconds

Power Conversion Unit for Hybrid Electric Vehicles (하이브리드 전기자동차 구동용 전력변환장치)

  • Lee, Ji-Myoung;Lee, Jae-Yong;Park, Rae-Kwan;Chang, Seo-Geon;Choi, Kyung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.7-11
    • /
    • 2008
  • This paper describes design procedure and control strategy of HDC(High side DC/DC Converter) and MCU(Motor Control Unit) for diesel hybrid electric vehicle. In designing HDC and MCU for HEV high power density and reliability is strongly needed to meet the demand of automotive industry. In order to achieve the high performance of a controller, MPC5554 based control board is developed. An optimized film capacitor and inductor are also developed for high efficiency driving. Skim 63 IGBT module of SEMIKRON for automotive is used for power switching device. The most efficient cooling model for optimal size and reliability were verified by simulation. These procedures are verified by bench or driving test and the results are present in this paper.

  • PDF

Development of Contingency Screening Module for Transient Stability Analysis Program (과도 안정도 해석 프로그램을 위한 상정사고 스크리닝 모듈 개발)

  • Hwang, Jung-Hee;Kim, Chon-Hoe;Jang, Gil-Soo;Lee, Byung-Jun;Kwon, Sae-Hyuk;Cho, Yoon-Sung;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.335-337
    • /
    • 2005
  • The purpose of this work is to explain techniques achieved while developing a transient stability program which is suitable to Korean power system, and to add a module for contingency screening. It concentrates on the development of Contingency Screening Module. In this thesis, a fast contingency screening algorithm SIME(Single Machin Equivalent), which is one of the Hybrid methods for the transient stability assessment is used to develop the contingency screening module. The proposed module is applied to a KEPCO system, and simulation results obtained from the program are compared to those of commercial programs.

  • PDF

Heat Dissipation Technology of IGBT Module Package (IGBT 전력반도체 모듈 패키지의 방열 기술)

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Kim, Young-Hun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

The development of radiation lifetime measuring module for KAEROT/m2 (KAEROT/m2용 방사선 수명 측정모듈 개발)

  • Lee, Nam-Ho;Kim, Seung-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.793-796
    • /
    • 2003
  • The electronics of a mobile robot ill nuclear facilities is required to satisfied the reliability to sustain survival in its radiation environment. To know how much radiation the robot has been encountered to replace sensitive electronic parts, a dosimeter to measure total accumulated dose is necessary. Among many radiation dosimeters or detectors, semiconductor radiation sensors have advantages in terms of power requirements and their sires over conventional detectors. This paper describes the use of the radiation-induced threshold voltage change of a commercial power pMOSFET as an accumulated radiation dose monitoring mean and that of the photo-current of a commercial PIN Diode as a dose-rate measurement mean. Commercial p-type power MOSFETs and PIN Diodes were tested in a Co-60 gamma irradiation facility to see their capabilities as radiation sensors. We found an inexpensive commercial power pMOSFET that shows good linearity in their threshold voltage shift with radiation dose and a PIN diode that shows good linearity in its photo-current change with dose-rate. According to these findings, a radiation hardened hybrid electronic radiation dosimeter for nuclear robots has been developed for the first time. This small hybrid dosimeter has also an advantage in the point of view of reliability improvement by using a diversity concept.

  • PDF

Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS (친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구)

  • Kim, Tae-Hoon;Song, Hyun-Sik;Lee, Baek-Haeng;Lee, Chan-Song;Kwon, Cheol-Soon;Jung, Do-Yang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

Study of high Speed Laser Cutting of LED Module (LED 모듈의 초고속 레이저 절단을 위한 연구)

  • Choi, Won Yong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • In this study, we conducted the preliminary research for high speed laser cutting of LED module. In particular, the feasibility of ultra-high speed laser cutting of 100 mm/s which exceeds the cutting speed of conventional dicing saw was examined. For this, copper/ceramic and silicone/ceramic hybrid substrates, which are the components of the LED module, were fabricated, and the surface morphology, surface roughness and flexural strength of the laser-cut samples were investigate and compared with the dicing-cut samples. To investigate optimal laser cutting conditions for hybrid substrates, the effects of various laser cutting conditions on cutting surface characteristics were studied using single ceramic and copper substrate. Optimal laser cutting conditions of the hybrid substrates were the use of Ar assist gas, high laser power and high assist gas pressure. Comparing the cutting surface of the hybrid substrates, the surface characteristics of the laser-cut samples are slightly inferior to those of the dicing-cut samples. The average surface roughness of the laser-cut samples was about $9{\mu}m$, and that of the dicing-cut samples was about $4{\mu}m$. However, considering very low cutting speed (3 mm/s) of the dicing saw, the surface morphology of the laser-cut sample was relatively uniform, and the surface roughness was not much different from that of the dicing-cut sample. The flexural strength of the laser-cut samples was equivalent to or slightly inferior to the flexural strength of dicing-cut samples. However, if the laser processing conditions are sufficiently optimized, the ultra-high speed laser cutting of the LED module will be possible.

Fabrication and Evaluation of Heat Transfer Property of 50 Watts Rated LED Array Module Using Chip-on-board Type Ceramic-metal Hybrid Substrate (Chip-on-board 형 세라믹-메탈 하이브리드 기판을 적용한 50와트급 LED 어레이 모듈의 제조 및 방열특성 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.149-154
    • /
    • 2018
  • This paper describes the fabrication and heat transfer property of 50 watts rated LED array module where multiple chips are mounted on chip-on-board type ceramic-metal hybrid substrate with high heat dissipation property for high power street and anti-explosive lighting system. The high heat transfer ceramic-metal hybrid substrate was fabricated by conformal coating of thick film glass-ceramic and silver pastes to form insulation and conductor layers, using thick film screen printing method on top of the high thermal conductivity aluminum alloy heat-spreading panel, then co-fired at $515^{\circ}C$. A comparative LED array module with the same configuration using epoxy resin based FR-4 PCB with thermalvia type was also fabricated, then the thermal properties were measured with multichannel temperature sensors and thermal resistance measuring system. As a result, the thermal resistance of the ceramic-metal hybrid substrate in the $4{\times}9$ type LEDs array module exhibited about one third to the value as that of FR-4 substrate, implying that at least triple performance of heat transfer property as that of FR-4 substrate was realized.

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System (하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안)

  • Park, Seongyun;Kim, Jaeyoung;Kim, Jonghoon;Ryu, Joonhyoung;Cho, Inho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.