• Title/Summary/Keyword: Hybrid polymer

Search Result 626, Processing Time 0.026 seconds

In-situ TiO2 Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor (광촉매 반응기용 세라믹 막에의 TiO2 층 형성과 성능평가)

  • Ahmad, Rizwan;Kim, Jin Kyu;Kim, Jong Hak;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.328-335
    • /
    • 2017
  • Fabricating photocatalytic composite membrane with a mesoporous and tailored morphological structure would have significant implication for environmental remediation. In this study, we reported hybrid $TiO_2$ immobilized photocatalytic membrane and its application for the treatment of dye solution. Photocatalytic film with high porosity and homogeneity was fabricated by graft copolymer as polymer template. Hybridization of membrane filtration with photocatalysis was successfully achieved by photocatalytic membrane reactor developed. Result showed that membrane permeability was significantly reduced after immobilizing the $TiO_2$ film on bare $Al_2O_3$ support. The membrane characterization indicated that well organized $TiO_2$ film was successfully formed on $Al_2O_3$ support. Benefiting from the controlled morphology of $TiO_2$ film, the composite membrane exhibited almost complete degradation of organic dye within 5 h of filtration under UV illumination. Langmuir-Hinshelwood model explained degradation of organic dye. First-order rate constant was approximately six times with $TiO_2$ immobilized composite ceramic membrane, higher than the one with the bare $Al_2O_3$ support (0.0081 vs. $0.0013min^{-1}$).

A Study on Numerical Analysis for Internal PEMFC Cooling of Power Pack for UPS (UPS 파워 팩 내부 연료전지의 냉각특성에 대한 수치 해석)

  • Song, Jun-Seok;Kim, Byeong-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.527-535
    • /
    • 2017
  • Heat management is one of the most critical issues in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) installed inside the fuel cell power pack of a fuel cell battery hybrid UPS. If the heat generated by the chemical reaction in the fuel cell is not rapidly removed, the durability and performance of the fuel cell may be affected, which may shorten its lifetime. Therefore, the objective of this study is to select and propose a proper cooling method for the fuel cells used in the fuel cell power pack of a UPS. In order to find the most appropriate cooling method, the various design factors affecting the cooling performance were studied. The numerical analysis was performed by a commercial program, i.e., COMSOL Multiphysics. Firstly, the surface temperature of the 1 kW class fuel cell stack with the cooling fans placed at the top was compared with the one with the cooling fans placed at the bottom. Various rotation speeds of the cooling fan, viz. 2,500, 3,000, 3,500, and 4,000 RPM, were tested to determine the proper cooling fan speed. In addition, the influence of the inhaled air flow rate was investigated by changing the porous area of the grille, which is the entrance of the air flowing from the outside to the inside of the power pack. As a result, it was found that for the operating conditions of the 1 kW class PEMFC to be acceptable, the cooling fan was required to have a minimum rotating speed of 3500 RPM to maintain the fuel cell surface temperature within an acceptable range. The results of this study can be effectively applied to the development of thermal management technology for the fuel cells inside the fuel cell power pack of a UPS.

MoS2/CNFs derived from Electrospinning and Heat treatment as the Efficient Electrocatalyst for Hydrogen Eovlution Reaction in Acidic Solution (전기 방사를 이용한 1D / 2D 하이브리드 구조 고활성 MoS2 / CNF 수소 발생 촉매의 합성 및 특성 분석)

  • Lee, Jeong Hun;Park, Yoo Sei;Jang, Myeong Je;Park, Sung Min;Lee, Kyu Hwan;Choi, Woo Sung;Choi, Sung Mook;Kim, Yang Do
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.885-892
    • /
    • 2018
  • Molybdenum disulfide ($MoS_2$) based electrocatalysts have been proposed as substitutes for platinum group metal (PGM) based electrocatalyst to hydrogen evolution reaction (HER) in water electrolysis. Here, we studied $MoS_2/CNFs$ hybrid catalyst prepared by electrospinning method with heat treatment for polymer electrolyte membrane(PEM) water electrolysis to improve the HER activity. The physicochemical and electrochemical properties such as average diameter, crystalline properties, electrocatalitic activity for HER of synthesized $MoS_2/CNFs$ were investigated by the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Raman Spectroscopy (Raman) and Linear Sweep Voltammetry (LSV). The as spun ATTM/PVP nanofibers were prepared by sol-gel and electrospinning method. Subsequently, the $MoS_2/CNFs$ was dereived from reduction heat treatment of ATTM at the ATTM/PVP nanofibers and carbonization heat treatment. Synthesized $MoS_2/CNFs$ electrocatalyst had an average diameter of $179{\pm}30nm$. We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ electrocatalyst consist of 3~4 layers from the Raman results. In addition, We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ catalyst consist of 7.47% octahedral 1T phase $MoS_2$, 63.77% trigonal prismatic 2H phase $MoS_2$ with 28.75% $MoO_3$ through the XRD, Raman and XPS results. It was shown that $MoS_2/CNFs$ had the overpotential of 0.278 V at $10mA/cm^2$ and tafel slope of 74.8 mV/dec in 0.5 M sulfuric acid ($H_2SO_4$) electrolyte.

Electrical Conductivity, Optical Transmittance, and Oxidation Stability of Transparent Conductive Polymer Film Coated With Layered Pristine Single-walled Carbon Nanotube and Silver Nanowire (무정제 단일벽 탄소나노튜브와 은나노와이어가 적층으로 코팅된 투명전도성 고분자 필름의 전기 전도성, 광학 투과도 및 산화안정성)

  • Young Sil Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.456-462
    • /
    • 2023
  • An electrically conductive and transparent electrode was created by applying a dispersion of pristine single-walled carbon nanotubes (SWCNTs) and silver nanowires to a polyethylene terephthalate (PET) film using a bar coating method. The SWCNTs were added to increase the electrical conductivity and transmittance of the silver nanowires while also preventing the haze from increasing due to the stacking of multiple layers containing SWCNTs and silver nanowires on the PET substrate. The silver nanowires in the electrode were also found to be stable against oxidation. The transparent electrode displayed excellent electrical and optical properties, with a sheet resistance of 47 Ω/□, transmittance of 96.72%, and haze of 1.93%. Additionally, the sheet resistance of the electrode remained stable over time, with a change of only 6.4% after a constant temperature and humidity test, making it suitable for long-term use. A hybrid transparent electrode that is economically feasible and environmentally sustainable has been developed through the utilization of pristine SWCNT and silver nanowire.

MICROLEAKAGE OF MICROFILL AND FLOWABLE COMPOSITE RESINS IN CLASS V CAVITY AFTER LOAD CYCLING (Flowable 및 microfill 복합레진으로 충전된 제 5급와동에서 load cycling 전,후의 미세변연누출 비교)

  • Kang, Suk-Ho;Kim, Oh-Young;Oh, Myung-Hwan;Cho, Byeong-Hoon;Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.142-149
    • /
    • 2002
  • Low-viscosity composite resins may produce better sealed margins than stiffer compositions (KempScholte and Davidson, 1988: Crim, 1989). Plowable composites have been recommended for use in Class V cavities but it is also controversial because of its high rates of shrinkage. On the other hand, in the study comparing elastic moduli and leakage, the microfill had the least leakage (Rundle et at. 1997) Furthermore, in the 1996 survey of the Reality Editorial Team, microfills were the clear choice for abfraction lesions. The purpose of this study was to evaluate the microleakage of 6 compostite resins (2 hybrids, 2 microfills, and 2 flowable composites) with and without load cycling. Notch-shaped Class V cavities were prepared on buccal surface of 180 extracted human upper premolars on cementum margin. The teeth were randomly divided into non-load cycling group (group 1) and load cycling group (group 2) of 90 teeth each. The experimental teeth of each group were randomly divided into 6 subgroups of 15 samples. All preparations were etched, and Single bond was applied. Preparations were restored with the following materials (n=15) : hybrid composite resin [Z250(3M Dental Products Inc. St. Paul, USA), Denfil(Vericom, Ahnyang, Korea)], microfill [Heliomolar RO(Vivadent, Schaan, Liechtenstein), Micronew(Bisco Inc. Schaumburg, IL, USA)], and flowable composite[AeliteFlo(Bisco Inc. Schaumburg, IL, USA), Revolution(Kerr Corp. Orange, CA, USA)]. Teeth of group 2 were subjected to occlusal load (100N for 50,000 cycles) using chewing simulator(MTS 858 Mini Bionix II system, MTS Systems Corp. Minn. USA). All samples were coated with nail polish 1mm short of the restoration, placed in 2% methylene blue for 24 hours, and sectioned with a diamond wheel. Enamel and dentin/cementum margins were analyzed for microleakage on a sclale of 0 (no leakage) to 3 (3/3 of wall). Results were statistically analyzed by Kruscal-Wallis One way analysis, Mann-Whitney U-test, and Student-Newmann-Keuls method. (p = 0.05) Results : 1. There was significantly less microleage in enamel margins than dentinal margins of all groups (p<0.05) 2. There was no significant between six composite resin in enamel margin of group 1. 3. In dentin margin of group 1, flowable composite had more microleakage than others but not of significant differences. 4. there was no significant difference between six composite resin in enamel margin of group 2. 5. In dentin margin of group 2, the microleakage were R>A =H=M>D>Z. But there was no significant differences. 6. In enamel margins, load cycling did not affect the marginal microleakage in significant degree. 7. In enamel margins, load cycling did affect the marginal microleakage only in Revolution. (p<0.05).

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.