• Title/Summary/Keyword: Hybrid polymer

Search Result 626, Processing Time 0.038 seconds

Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns

  • El-Heloua, Rafic G.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.245-260
    • /
    • 2015
  • In this study, nominal moment-axial load interaction diagrams, moment-curvature relationships, and ductility of rectangular hybrid beam-column concrete sections are analyzed using the modified Hognestad concrete model. The hybrid columns are primarily reinforced with steel bars with additional Glass Fiber Reinforced Polymer (GFRP) control bars. Parameters investigated include amount, pattern, location, and material properties of concrete, steel, and GFRP. The study was implemented using a user defined comprehensive $MATLAB^{(R)}$ simulation model to find an efficient hybrid section design maximizing strength and ductility. Generating lower bond stresses than steel bars at the concrete interface, auxiliary GFRP bars minimize damage in the concrete core of beam-column sections. Their usage prevents excessive yielding of the core longitudinal bars during frequent moderate cyclic deformations, which leads to significant damage in the foundations of bridges or beam-column spliced sections where repair is difficult and expensive. Analytical results from this study shows that hybrid steel-GFRP composite concrete sections where GFRP is used as auxiliary bars show adequate ductility with a significant increase in strength. Results also compare different design parameters reaching a number of design recommendations for the proposed hybrid section.

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Hybrids of Chitosan and Bamboo Charcoal/Silica

  • Li, Xiang Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • Chitosan-polyvinyl alcohol (PVA) -bamboo charcoal/silica (CS-PVA-BC/SI) hybrid fillers with compatibilized styrene-butadiene rubber (SBR) composites were fabricated by the interpenetrating polymer network (IPN) method. The structure and composition of the composite samples were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the rheometer, strain sweep and temperature sweep modes. The storage and loss moduli of SBR increased significantly with the incorporation of different hybrid fillers, which was attributed to the formation of an interphase between the hybrid fillers and rubber matrix, and the effective dispersion of the hybrid fillers. The mechanical properties (hardness, tensile strength, oxygen transmission rate, and swelling rate) of the composite samples were characterized in detail. From the results of the mechanical test, it was found that BC-CS-PVA0SBR had the best mechanical properties. Therefore, the BC-CS-PVA hybrid filler provided the best reinforcement effects for the SBR latex in this research.

Curing and Coating Properties of Photo-Curable Self-Photoinitiating Acrylate (광경화형 자가광개시 아크릴레이트의 경화특성 및 도막물성)

  • Han, A-Ram;Hong, Jin-Who;Kim, Hyun-Kyoung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.22-30
    • /
    • 2014
  • Self-photoinitiating acrylate (SPIA) which can undergo self-initiation under UV irradiation was synthesized by a Michael addition in the presence of a base catalyst. The SPIA polymerizations were investigated by photo-differential scanning calorimeter (photo-DSC) and surface physical properties such as pendulum hardness and pencil hardness. The results showed that the SPIA can cure upon UV irradiation by itself without a photoinitiator. But we found out that both the curing rate and the conversion were too low for the self-curing reaction of SPIA. In order to improve the SPIA curing properties, we introduced the SPIA/cationic hybrid system and observed the effects of the addition of commercial free radical type monomer and photoinitiator on the curing behaviors. SPIA/cationic hybrid system was the best suitable to improve the SPIA curing properties. The kinetic analysis indicated that the cationic monomer and photoinitiator apparently accelerated the cure reaction and rate of the hybrid SPIA system, mostly due to the synergistic effect of cationic monomer and photoinitiator increasing the mobility of active species and the generation of reactive species (free radical, cation) during the photopolymerization process. The physical properties showed that, unlike typical free radical system, the hybrid systems did not show oxygen inhibition effect because of cationic reaction on the coating surface.

Synthesis and Their Properties of (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass Composites by Sol-Gel Process (Sol-Gel법을 이용한 (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass 복합체의 합성과 그 특성)

  • 이병우;김병호;윤영권;한원택
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.993-1001
    • /
    • 1997
  • The (0.8PPV+0.2DMPPV) copolymer and silica/borosilicate composites were synthesized by sol-gel process. The organic-inorganic hybrid solution was prepared by using of (0.8PPV+0.2DMPPV) copolymer precursor solution as a raw material for organic components and TEOS and TMB for glass components. Then by drying the solution in vacuum at 5$0^{\circ}C$ for 7days and subsequent heat treatment in vacuum at 15$0^{\circ}C$~30$0^{\circ}C$ for 2h~72h with heating rate of 0.2$^{\circ}C$/min and 1.8$^{\circ}C$/min, the organic-inorganic composites were synthesized. Microstructural evolution of the composites was characterized by DSC, IR spectrocopy, UV/VIS spectroscopy, and TEM. Elimination of the polymer precursor and degradation of the polymer were observed by DSC and Si-O and trans C=C absorption peaks were identified by IR spectra. The polymer was found to be successfully incorporated into the glass matrix and it was confirmed by the absorption peaks from the polymer in the UV/VIS spectra and the TEM results. The absorption peak of the composites was found to shift toward short wavelength side compared to that of the pure polymer and the amount of the blue shift increased with increasing the heat treatment temperature and heat treatment time and with decreasing the heating rate.

  • PDF

Enhancement of Physical Properties in Partially Crosslinked Waste High Density Polyethylene (재활용 고밀도 폴리에틸렌의 가교에 의한 물성 향상 연구)

  • Lee, Jong-Rok;Lee, Dong-Gun;Hong, Soon-Man;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • The characteristics of crosslinking and physical properties in partially crosslinked waste high density polyethylene (HDPE) were studied by introducing reactive melt processing with perbutyl peroxide (PBP). It was found that impurities in waste HDPE affected the crosslinking kinetics. Decrease in density and heat of fusion were observed in partially crosslinked HDPE while its melt viscosity increased. It was explained that impurities in waste HDPE enhanced the crosslinking compared to pure HDPE As a result, dramatic mechanical property improvement was achieved in the waste HDPE by crosslinking reaction.

Shape Memory Polymer Nanocomposites (형상 기억 고분자 나노 복합 소재)

  • Hong, Jin-Ho;Yun, Ju-Ho;Kim, Il;Shim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.188-198
    • /
    • 2010
  • The term 'shape memory polymers (SMPs)' describes a class of polymers which can remember the original shape and recover from deformed to its original shape by the applied stimuli, e.g., heat, electricity, magnetic field, light, etc. SMPs are classified as one of the 'smart polymers' and have great potentials as high-value-added materials. Especially, low thermal, electrical, and mechanical properties of SMPs can be improved by incorporating the various fillers. This paper aims to review the SMPs and their basic principles, and the trends of the development of SMPs nanocomposites.

Enhancement of Compatibility and Toughening of Commingled Packaging Film Wastes (혼합 폐포장 필름의 상용성 증진과 강인화)

  • Jeon Byeong-Hwan;Yoon Hogyu;Hwang Seung-Sang;Kim Jungahn;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • The relationships among mechanical properties, rheological properties, and morphology by reactive extrusion based on commingled pckaging film wastes contains polypropylene (PP) pckaging film system [PP/polyethylene (PE)/aluminum (Al)/poly(ethylene terephthalate) (PET)] and Nylon packaging film system[Nylon/PE/linear-low density polyethylene (LLDPE)] were investigated to improve the compatibility and toughness of these wastes using various compatibilizers such as ethylene vinylacetate (EVA), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer (SEBS-g-MA), polyethylene-graft-maleic anhydride (PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA) , polyethylene-graft-acrylic acid (PE-g-AA) and polypropylene-graft-acrylic acid (PP-g-AA). Compared with simple melt blend system, the blends showed improvement of about $50\%$ increase in physical properties when SEBS and EVA were added. However, SEBS-g-MA thermoplastic elastomer which is highly reactive with amine terminal group of nylon, resulted in about $200\%$ increase in impact strength. This compatibilization effect resulted from the increase of interfacial adhesion and the reduction of domain size of dispersed phase in PP/Nylon blend system.

Electrical and Rheological Behaviors of VGCF/Polyphenylene Sulfide Composites (기상성장 탄소섬유/폴리페닐렌설파이드 복합체 제조 및 전기적$\cdot$유변학적 거동)

  • Noh, Han-Na;Yoon, Ho-Gyu;Kim, Jun-Kyung;Lee, Hyun-Jung;Park, Min
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.85-89
    • /
    • 2006
  • The effect of vapor grown carbon fiber (VGCF) contents on electrical and rheological properties of VGCF filled polyphenylene sulfide (PPS) composites prepared through melt mixing using a twin screw exruder was studied. This method was proved to be quite effective to produce good dispersion of VGCF in the matrix even for highly filled PPS. From the dependence of the electrical conductivity on VGCF content, the percolation phenomena began to occur above $10\;wt\%$. While there is only a marginal increase of viscosity for 1 and $5\;wt\%$ VGCF filled PPS, the composites containing $10\;wt\%$. While VGCF showed abrupt increase in viscosity as well as flattening of frequency vs modulus curve, indicating a transition from a liquid-like to a solid-like behavior due to the creation of VGCF network. This result agrees well to the fact that the network formation in the composite can be composite by rheological property dependence on filler content as well as by electrical conductivity measurement.

Fracture Behaviors of SiCf/SiC Composites Prepared by Hybrid Processes of CVI and PIP (화학침착법과 고분자함침 열분해법의 복합공정으로 제조한 SiCf/SiC 복합체의 제조 공정에 따른 파괴거동)

  • Park, Ji Yeon;Han, Jangwon;Kim, Daejong;Kim, Weon-Ju;Lee, Sea Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.430-434
    • /
    • 2014
  • $SiC_f$/SiC composites were prepared using the hybrid process of chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP). Before the application of PIP, partially matrix-filled preform composites with different densities were fabricated by control of chemical vapor infiltration time and temperature. The changes of the final density of the $SiC_f$/SiC composites had a tendency similar to that of preform composites partially filled by CVI. Composites with lower density after the CVI process had a larger increment of density during the PIP process. Three types of microstructures were observed on the fractured surface of the composite: 1) well pulled-out fibers and lower density, 2) slightly pulled-out fibers and higher density, and 3) only bulk SiC. The different fractions and distributions of the microstructures could have an effect on the mechanical properties of the composites. In this study, $SiC_f$/SiC composites prepared using a hybrid process of CVI and PIP had density values in the range of $1.05{\sim}1.44g/cm^3$, tensile strength values in the range of 76.4 ~ 130.7 MPa, and fracture toughness values in the range of $11.2{\sim}13.5MPa{\cdot}m^{1/2}$.

Synthesis of Hybrid Cation Exchange Fibers by E-Beam Preirradiation and Their Adsorption Properties for Metal Ions (E-Beam 전조사법을 이용한 복합양이온 교환섬유의 합성 및 금속이온 흡착특성)

  • Baek Ki-Wan;Nho Young-Chang;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.305-310
    • /
    • 2006
  • The hybrid cation exchange fibers using graft copolymer of styrene onto PE/PP with PET trunk polymers were synthesized by electron beam preirradiation. The degree of grafting showed 123% value at 80% concentration of styrene. And also, amount of sulfonyl group in the ion exchanger was showed 3.3 mmol/g at 70% concentration of styrene and their values were constant after 70%. The tensile strength for fibers was lower than trunk fibers, and their value of ion exchange fibers were also below than copolymer. It was $0.206kgf/mm^2$ value. The breakthrough time for Ca and Mg ions of hybrid cation exchange fibers were increased with the increase in the pH and temperature. The breakthrough of Mg was slower the mixture than single Mg solution. Adsorption rate constant for Ca, Mg ions and maximum ion exchange capacity were 0.012, 0.011 L/mg.h and 47.06, 42.83 mg/g, and also, activation energies were 2169 and 1534 J/mol, respectively.