Browse > Article

Electrical and Rheological Behaviors of VGCF/Polyphenylene Sulfide Composites  

Noh, Han-Na (Department of Materials Science, Korea University)
Yoon, Ho-Gyu (Department of Materials Science, Korea University)
Kim, Jun-Kyung (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
Lee, Hyun-Jung (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
Park, Min (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
Publication Information
Polymer(Korea) / v.30, no.1, 2006 , pp. 85-89 More about this Journal
Abstract
The effect of vapor grown carbon fiber (VGCF) contents on electrical and rheological properties of VGCF filled polyphenylene sulfide (PPS) composites prepared through melt mixing using a twin screw exruder was studied. This method was proved to be quite effective to produce good dispersion of VGCF in the matrix even for highly filled PPS. From the dependence of the electrical conductivity on VGCF content, the percolation phenomena began to occur above $10\;wt\%$. While there is only a marginal increase of viscosity for 1 and $5\;wt\%$ VGCF filled PPS, the composites containing $10\;wt\%$. While VGCF showed abrupt increase in viscosity as well as flattening of frequency vs modulus curve, indicating a transition from a liquid-like to a solid-like behavior due to the creation of VGCF network. This result agrees well to the fact that the network formation in the composite can be composite by rheological property dependence on filler content as well as by electrical conductivity measurement.
Keywords
VGCF; polyphenylene sulfide; nanocomposite; electrical conductivity; rheology; dispersion;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. A. Gordeyev, F. J. Macedo, J. A. Ferreira, F. W. J. V. Hattum, a nd C. A. Bernardo, Physica B, 279, 33 (2000)   DOI
2 R. J. Kuriger, M. K. Alam, D. P. Anderson, and R. L. Jacobsen, Composites: Part A, 33, 53 (2002)   DOI   ScienceOn
3 J. Sandler, P. Werner, M. S. P. Shaffer, V. Demchuk, V. Altstadt, and A. H. Windle, Composites: Part A, 33, 1033 (2002)   DOI   ScienceOn
4 R. Andrews, D. Jacques, M. Minot, and T. Rantell, Macromol. Mater. Eng., 287, 395 (2002)   DOI   ScienceOn
5 M. Abdel-Goad and P. Potschke, J. Non-Newtonian Fluid Mech, 128, 2 (2005)   DOI   ScienceOn
6 F. Mighri, M. A. Huneault, and M. F. Champagne, Polym. Eng. Sci., 44, 1755 (2004)   DOI   ScienceOn
7 M. Tosaki, H. Sakai, A. Sasaki, Y. Takahashi, M. Matsubara, and M. Endo, Kobunshi Ronbunshu, 62, 585 (2005)   DOI   ScienceOn
8 O. S. Carneiro, J. A. Covas, C. A. Bernardo, G. Caldeira, F. W. J. Van Hattum, J. M. Ting, R. L. Alig, and M. L. Lake, Compos. Sci. Technol., 58, 401 (1998)   DOI   ScienceOn
9 E. V. Barrera, J.Mineral, Metals and Mat. Soc., 52, 38 (2000)
10 Polymer Data Handbook, Oxford University Press, New York, p 719 (1999)
11 H. Shinohara, Recent Advances in the Research and Development of Nanocarbon Materials, CMC, Tokyo, 2003
12 M. K. Seo and S. J. Park, Chem. Phys. Lett., 395, 44 (2004)   DOI
13 T. Takahashi, K. Yonetake, K. Koyama, and T. Kikuchi, Macromol Rapid commun., 24, 763 (2003)   DOI   ScienceOn
14 P. J. F. Harris, Int. Mat. Rev., 49, 31 (2004); E. T. Thostenson, C. Li, and T. Chou, Compos. Sci. Technol., 65, 491 (2005)   DOI   ScienceOn
15 K. Lozano, J. Bonilla-Rios, and E. V. Barrera, J. Appl. Polym. Sci., 80, 1162 (2001)   DOI   ScienceOn
16 D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000)   DOI   ScienceOn
17 L.Jin, C. Bower, and O. Zhou, Appl. Phys. Lett., 73, 1197 (1998)   DOI   ScienceOn
18 R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002)   DOI   ScienceOn
19 M. S. P. Shaffer and A. H. Windle, Adv. Meter., 11, 937 (1999)   DOI
20 P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002)   DOI   ScienceOn
21 Polymer Physics, The polymer society of Japan, p 15-17 (1998)