• 제목/요약/키워드: Hybrid norm

검색결과 30건 처리시간 0.025초

A HYBRID METHOD FOR REGULARIZED STRUCTURED LINEAR TOTAL LEAST NORM

  • KWON SUNJOO
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.621-637
    • /
    • 2005
  • A hybrid method solving regularized structured linear total least norm (RSTLN) problems, which have highly ill-conditioned coefficient matrix with special structures, is suggested and analyzed. This scheme combining RSTLN algorithm and separation by parts guarantees the convergence of parameters and has an advantages in reducing the residual norm and relative error of solutions. Computational tests for problems arisen in signal processing and image formation process confirm that the presenting method is effective for more accurate solutions to (R)STLN problem than the (R)STLN algorithm.

강인한 역산으로서의 하이브리드 $l^1/l^2$ norm IRLS 방법의 효율적 구현기법 (An Efficient Implementation of Hybrid $l^1/l^2$ Norm IRLS Method as a Robust Inversion)

  • 지준
    • 지구물리와물리탐사
    • /
    • 제10권2호
    • /
    • pp.124-130
    • /
    • 2007
  • 탄성파 역산에 있어서 가장 널리 사용되는 최소자승($l^2$ norm)해는 이상치(outlier)에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 $l^1$ norm을 최소화하는 해는 이상치에 강인한 면을 보이나 일반적으로 좀 더 많은 계산이 필요하다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)을 이용하면 이러한 $l^1$ norm 문제의 근사해(approximate solution)를 효율적으로 구할 수 있다. 본 논문에서는 작은 크기의 잔여분은 $l^2$ norm으로 처리하며, 큰 크기의 잔여분은 $l^1$ norm으로 처리하는 하이브리드 $l^1/l^2$ norm 최소화를 IRLS 방법에 쉽게 적용하는 구현 기법을 소개한다. 소개된 알고리즘은 특이치(singularity)처리를 위한 임계값의 결정에 민감하게 반응하는 기존의 $l^1$ norm IRLS 방법과는 달리 임계값 결정에 상관없이 늘 강인한 역산의 특성을 보여준다.

${\ell}^1/{\ell}^2$ norm IRLS 방법을 사용한 강인한 탄성파자료역산 (Robust inversion of seismic data using ${\ell}^1/{\ell}^2$ norm IRLS method)

  • 지준
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 공동학술대회 논문집
    • /
    • pp.227-232
    • /
    • 2005
  • 탄성파 역산에 있어서 최소자승(${\ell}^2-norm$)해는 큰 오차에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 ${\ell}^p-norm$ ($1{\le}p<2$)을 최소화하는 해는 잡음에 강인한 해를 보이나 보통은 좀 더 많은 계산이 요구된다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)은 이러한 ${\ell}^p-norm$ 문제의 근사해를 효율적으로 구할 수 있도록 해준다. 본 논문에서는 작은 크기의 잔여분은 ${\ell}^2-norm$으로 큰 크기의 잔여분은 ${\ell}^2-norm$으로 적용되는 하이브리드 ${\ell}^1/{\ell}^2$최소화를 IRLS 방법에 쉽게 적용하는 기법을 소개한다. 모의 자료와 실제 현장자료에의 적용결과 큰 잡음이 포함된 경우 최소자승해보다 하이브리드 방법의 경우에 개선된 결과를 보임을 확인할 수 있었다.

  • PDF

Hybrid L1/L2 를 이용한 주파수 영역 탄성파 파형역산 (Robust seismic waveform inversion using backpropagation algorithm)

  • 정우근;하태영;신창수
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.124-129
    • /
    • 2007
  • For seismic imaging and inversion, the inverted image depends on how we define the objective function. ${\ell}^1$-norm is more robust than ${\ell}^2$-norm. However, it is difficult to apply the Newton-type algorithm directly because the partial derivative for ${\ell^1$-norm has a singularity. In our paper, to overcome the difficulties of singularities, Huber function given by hybrid ${\ell}^1/{\ell}^2$-norm is used. We tested the robustness of our new object function with several noisy data set. Numerical results show that the new objective function is more robust to band limited spiky noise than the conventional object function.

  • PDF

A hybrid-separate strategy for force identification of the nonlinear structure under impact excitation

  • Jinsong Yang;Jie Liu;Jingsong Xie
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.119-133
    • /
    • 2023
  • Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The 'hybrid' means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The 'separate' means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.

복합병렬형 로봇의 최적설계

  • 김찬수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.756-760
    • /
    • 1995
  • Optimal design of a hybrid parallel robot is investigated. In order to optimize the mechanism, new performance measures are introduced since use of the previous methods suffer form lack of the physical meaning due to the dimensional inhomogeneity. To overcome the problem, an Euclidean norm definition of each output space with homogeneous dimension is used to find input-output norm relation and derive new performance measures for each output spaces, that is, translational and rotational velocity, and derive new torque space. For illustion,the derived performance measures is applied to find the isotropic design of a Stewart platform robot which has condition number measures equal to one.

  • PDF

HYBRID DIFFERENCE SCHEMES FOR A SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS

  • Priyadharshini, R.Mythili;Ramanujam, N.;Tamilselvan, A.
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1001-1015
    • /
    • 2009
  • In this paper, two hybrid difference schemes on the Shishkin mesh are constructed for solving a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a small parameter multiplying the highest derivative. We prove that the schemes are almost second order convergence in the supremum norm independent of the diffusion parameter. Error bounds for the numerical solution and its derivative are established. Numerical results are provided to illustrate the theoretical results.

  • PDF

STRONG CONVERGENCE OF THE MODIFIED HYBRID STEEPEST-DESCENT METHODS FOR GENERAL VARIATIONAL INEQUALITIES

  • Yao, Yonghong;Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.179-190
    • /
    • 2007
  • In this paper, we consider the general variational inequality GVI(F, g, C), where F and g are mappings from a Hilbert space into itself and C is the fixed point set of a nonexpansive mapping. We suggest and analyze a new modified hybrid steepest-descent method of type method $u_{n+l}=(1-{\alpha}+{\theta}_{n+1})Tu_n+{\alpha}u_n-{\theta}_{n+1g}(Tu_n)-{\lambda}_{n+1}{\mu}F(Tu_n),\;n{\geq}0$. for solving the general variational inequalities. The sequence $\{x_n}\$ is shown to converge in norm to the solutions of the general variational inequality GVI(F, g, C) under some mild conditions. Application to constrained generalized pseudo-inverse is included. Results proved in the paper can be viewed as an refinement and improvement of previously known results.

HYBRID DIFFERENCE SCHEMES FOR SINGULARLY PERTURBED PROBLEM OF MIXED TYPE WITH DISCONTINUOUS SOURCE TERM

  • Priyadharshini, R. Mythili;Ramanujam, N.;Valanarasu, T.
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1035-1054
    • /
    • 2010
  • We consider a mixed type singularly perturbed one dimensional elliptic problem with discontinuous source term. The domain under consideration is partitioned into two subdomains. A convection-diffusion and a reaction-diffusion type equations are posed on the first and second subdomains respectively. Two hybrid difference schemes on Shishkin mesh are constructed and we prove that the schemes are almost second order convergence in the maximum norm independent of the diffusion parameter. Error bounds for the numerical solution and its numerical derivative are established. Numerical results are presented which support the theoretical results.

변압기 고장 진단을 위한 하이브리드형 전문가 시스템 (A Hybrid Type Based Expert System for Fault Diagnosis in Transformers)

  • 전영재;윤용한;김재철;최도혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.143-145
    • /
    • 1996
  • This paper presents the hybrid type based expert system for fault diagnosis in transformers. The proposed system uses the novel fault diagnostic technique based on dissolved gas analysis(DGA) in oil-immersed transformers. The uncertainty of key gas analysis, norm threshold, and gas ratio boundaries are managed by using a fuzzy set. Also, the uncertainty of the fault diagnostic rules are handled by using fuzzy measures. Finally, kohnen's feature map performs fault classification in transformers. To verify the effectiveness of the proposed diagnosis technique, the hybrid type based expert system for fault diagnosis has been tested by using KEPCO's transformer gas records.

  • PDF