• Title/Summary/Keyword: Hybrid navigation system

Search Result 131, Processing Time 0.029 seconds

Underwater Hybrid Navigation Algorithm Based on an Inertial Sensor and a Doppler Velocity Log Using an Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 알고리듬)

  • 이종무;이판묵;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

A Hybrid Navigation System for Intelligent Wheelchair (지능형 휠체어를 위한 하이브리드 내비게이션 시스템)

  • Ko, Eun-Jeong;Ju, Jin-Sun;Kim, Eun-Yi
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.552-557
    • /
    • 2009
  • In this paper, we propose hybrid navigation system, for obstacle detection and avoidance in Intelligent wheelchairs (IWs). To robustly detect obstacles and avoid them on various environments, hybrid navigation system combines both range-sensor and camera information. For this, 10 range-sensors (2 ultrasonic and 8 infra-red sensors) and CCD camera are used. Through processing the informations obtained from those sensors, our system can detect obstacles with various sizes and shapes, and then avoid them. To assess the effectiveness of the proposed hybrid navigation system, it was tested on complex environments including various obstacles, then the results showed the potential of our system as mobility aids for disabled people.

  • PDF

Autonomous Wall-Following of Wheeled Mobile Robots using Hybrid Control Approach (차륜형 이동로봇의 자율 벽면-주행을 위한 하이브리드 제어)

  • Lim, Mee-Seub;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3105-3107
    • /
    • 1999
  • In this paper, we propose a new approach to autonomous wall-following of wheeled mobile robots using hybrid control system. The hybrid control approach IS introduced to the motion control of nonholonomic mobile robots in the Indoor navigation problems. In hybrid control architecture, the discrete states are defined by the user-defined constraints, and the reference motion commands are specified In the abstracted motions. The hybrid control system applied to motion planning and autonomous navigation with obstacle avoidance In indoor navigation problem. Simulation results show that it is an effective method for the autonomous navigation in indoor environments.

  • PDF

A Study on the DOP Improvement using Hybrid Satellite Navigation System (위성항법 통합시스템을 이용한 DOP 향상에 관한 연구)

  • Choi, Chang-Mook;Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2045-2049
    • /
    • 2011
  • In this paper, the DOP improvement was studied for the solution to an intentional jamming and the increase of position accuracy by selecting preferred satellites with hybrid satellite navigation system(both GPS and GLONASS). As a result of data analysis, the increases in 0.3 ~ 0.8 GDOP, 0.2 ~ 0.6 PDOP, and 0.1 ~0.3 TDOP were acquired by using hybrid satellite navigation system instead of GPS-only.

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • Lee, Chong-Moo;Lee, Pan-Mook;Kim, Sea-Moon;Hong, Seok-Won;Seo, Jae-Won;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.141-148
    • /
    • 2003
  • This paper presents a rotating ann test for assessment of an underwater hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. The rotating ann tests are conducted in the Ocean Engineering Basin of KRISO, KORDI to generate circular motion in laboratory, where the USBL system was absent in the basin. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

  • PDF

A Study on the Characteristic Analysis of the Gyro Sensor and Development of Hybrid Navigation Algorithm for the Car Navigation (차량 항법용 자이로 센서의 특성분석 및 혼합항법 알고리즘 개발에 관한 연구)

  • 김상겸;유환신;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.171-179
    • /
    • 2004
  • Today, the number of vehicle increased rapidly with the development of modem science technology, and it caused serious problems; traffic jam, accident and pollution etc. One of the solve methods these problems it is necessary to develope the vehicle navigation systems and it is already widely used to in field of military etc. Vehicle navigation system can increase the efficiency of traffic flow and offer at a drivers at a best driving conditions. In the vehicle navigation, most important thing is to measure of correct position. There are classifiable as three types. The first is G.P.S., method at artificial satellites which measures the present position and velocity any time, any where in the world at the same time. Secondly, a vehicle can determine its position and path information with a gyroscope and odometer signal, which is called Dead-Reckoning method. Thirdly, hybrid navigation system is the combined of two methods to make utilize the advantage of each navigation system. In the paper, we are analyzed to characteristics at a gyro sensor and introduce at a composition of hybrid navigation system which is combined with the G.P.S., D.R., and map-matching technique. We analyze deeply for the Map-Matching method and explain the coordinate transformation for G.P.S., and the Hybrid navigation algorithm is developed and experimented. Finally, we conclude and comment about our road test results.

Improving the Performance of DR/GPS Integrated System For Land Navigation Using Sigma Point Based RHKF Filter (시그마 포인트 기반 RHKF 필터를 사용한 지상합법용 DR/GPS 결합시스템의 성능 향상)

  • Choi, Wan-Sik;Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.174-185
    • /
    • 2006
  • This paper describes a DR construction for land navigation and the sigma point based receding horizon Kalman FIR (SPRHKF) filter for DR/GPS hybrid navigation system. A simple DR construction is adopted to improve the performance both of the pure DR navigation and the DR/GSP hybrid navigation system. In order to overcome the flaws of the EKF, the SPKF is merged with the receding horizon strategy. This filter has several advantages over the EKF, the SPKF, and the RHKF filter. The advantages include the robustness to the system model uncertainty, the initial estimation error, temporary unknown bias, and etc. The computational burden is reduced. Especially, the proposed filter works well even in the case of exiting the unmodeled random walk of the inertial sensors, which can be occurred in the MEMS inertial sensors by temperature variation. Therefore, the SPRHKF filter can provide the navigation information with good quality in the DR/GPS hybrid navigation system for land navigation seamlessly.

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

A Hybrid Navigation System for Underwater Unmanned Vehicles, Using a Range Sonar (초음파 거리계를 이용한 무인잠수정의 수중 복합 항법시스템)

  • LEE PAN-MOOK;JEON BONG-HWAN;KIM SEA-MOON;LEE CHONG-MOO;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.33-39
    • /
    • 2004
  • This paper presents a hybrid underwater navigation system for unmanned underwater vehicles, using an additional range sonar, where the navigation system is based on inertial and Doppler velocity sensors. Conventional underwater navigation systems are generally based on an inertial measurement unit (IMU) and a Doppler velocity log (DVL), accompanying a magnetic compass and a depth sensor. Although the conventional navigation systems update the bias errors of inertial sensors and the scale effects of DVL, the estimated position slowly drifts as time passes. This paper proposes a measurement model that uses the range sonar to improve the performance of the IMU-DVL navigation system, for extended operation of underwater vehicles. The proposed navigation model includes the bias errors of IMU, the scale effects of VL, and the bias error of the range sonar. An extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation, when the external measurements are available. To illustrate the effectiveness of the hybrid navigation system, simulations were conducted with the 6-d.o.f. equations of motion of an AUV in lawn-mowing survey mode.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF