• 제목/요약/키워드: Hybrid monitoring

검색결과 274건 처리시간 0.02초

2D 비전과 3D 동작인식을 결합한 하이브리드 실시간 모니터링 시스템 (Hybrid Real-time Monitoring System Using2D Vision and 3D Action Recognition)

  • 임종헌;성만규;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제18권5호
    • /
    • pp.583-598
    • /
    • 2015
  • We need many assembly lines to produce industrial product such as automobiles that require a lot of composited parts. Big portion of such assembly line are still operated by manual works of human. Such manual works sometimes cause critical error that may produce artifacts. Also, once the assembly is completed, it is really hard to verify whether of not the product has some error. In this paper, for monitoring behaviors of manual human work in an assembly line automatically, we proposes a realtime hybrid monitoring system that combines 2D vision sensor tracking technique with 3D motion recognition sensors.

In-House Developed Surface-Guided Repositioning and Monitoring System to Complement In-Room Patient Positioning System for Spine Radiosurgery

  • Kim, Kwang Hyeon;Lee, Haenghwa;Sohn, Moon-Jun;Mun, Chi-Woong
    • 한국의학물리학회지:의학물리
    • /
    • 제32권2호
    • /
    • pp.40-49
    • /
    • 2021
  • Purpose: This study aimed to develop a surface-guided radiosurgery system customized for a neurosurgery clinic that could be used as an auxiliary system for improving the accuracy, monitoring the movements of patients while performing hypofractionated radiosurgery, and minimizing the geometric misses. Methods: RGB-D cameras were installed in the treatment room and a monitoring system was constructed to perform a three-dimensional (3D) scan of the body surface of the patient and to express it as a point cloud. This could be used to confirm the exact position of the body of the patient and monitor their movements during radiosurgery. The image from the system was matched with the computed tomography (CT) image, and the positional accuracy was compared and analyzed in relation to the existing system to evaluate the accuracy of the setup. Results: The user interface was configured to register the patient and display the setup image to position the setup location by matching the 3D points on the body of the patient with the CT image. The error rate for the position difference was within 1-mm distance (min, -0.21 mm; max, 0.63 mm). Compared with the existing system, the differences were found to be as follows: x=0.08 mm, y=0.13 mm, and z=0.26 mm. Conclusions: We developed a surface-guided repositioning and monitoring system that can be customized and applied in a radiation surgery environment with an existing linear accelerator. It was confirmed that this system could be easily applied for accurate patient repositioning and inter-treatment motion monitoring.

가속도-임피던스 특성을 이용한 강판형교의 하이브리드 구조건전성 모니터링 (Hybrid Structural Health Monitoring of Steel Plate-Girder Bridges using Acceleration-Impedance Features)

  • 홍동수;도한성;나원배;김정태
    • 대한토목학회논문집
    • /
    • 제29권1A호
    • /
    • pp.61-73
    • /
    • 2009
  • 본 논문에서는 강판형교의 주된 두 손상유형인 거더의 휨 강성 저하와 지점부의 손상을 검색하기 위해 가속도-임피던스 특성을 이용한 하이브리드 구조건전성 모니터링 기법을 제안하였다. 하이브리드 기법은 1) 전역적인 방법으로 손상의 발생을 경보하고, 2) 구조물의 구조 부재내의 발생된 손상을 분류하며, 3) 구조 부재에 따라 적절한 방법을 이용하여 세부적으로 분류된 손상을 평가하는 크게 3단계로 구성되었다. 첫 번째 단계에서는 가속도 특성 변화를 모니터링하여 전역적인 손상의 발생을 경보한다. 두 번째 단계에서는 임피던스 특성 변화를 모니터링하여 경보된 손상유형을 분류한다. 세 번째 단계에서는 모드변형에너지기반 손상지수법과 RMSD 기법을 이용하여 손상의 위치와 크기를 평가한다. 몇몇의 손상 시나리오에 의해 측정된 하이브리드 가속도-임피던스 신호를 이용한 모형 강판형교 실험을 통해 제안된 하이브리드 기법의 유용성을 평가하였다. 또한, 온도변화 및 지점손상 조건에 대한 실험을 통해 임피던스기반 손상모니터링의 정확도에 미치는 온도유발 영향을 검토하였다.

Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Yi, Jin-Hak;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • 제24권4호
    • /
    • pp.385-403
    • /
    • 2017
  • In recent years, the wind energy has played an increasingly important role in national energy sector of many countries. To harvest more electric power, the wind turbine (WT) tower structure becomes physically larger, which may cause more risks during long-term operation. Associated with the great development of WT projects, the number of accidents related to large-scaled WT has also been increased. Therefore, a structural health monitoring (SHM) system for WT structures is needed to ensure their safety and serviceability during operational time. The objective of this study is to develop a hybrid damage detection method for WT tower structures by measuring vibration and impedance responses. To achieve the objective, the following approaches are implemented. Firstly, a hybrid damage detection scheme which combines vibration-based and impedance-based methods is proposed as a sequential process in three stages. Secondly, a series of vibration and impedance tests are conducted on a lab-scaled model of the WT structure in which a set of bolt-loosening cases is simulated for the segmental joints. Finally, the feasibility of the proposed hybrid damage detection method is experimentally evaluated via its performance during the damage detection process in the tested model.

광섬유 센서를 이용한 복합재료 적층판의 성형 모니터링 (Cure Monitoring of Composite Laminates Using Fiber Optic Sensors)

  • 강현규;강동훈;박형준;홍창선;김천곤
    • 한국항공우주학회지
    • /
    • 제30권2호
    • /
    • pp.59-66
    • /
    • 2002
  • 광섬유 브래그 격자/외부 패브리-페로 간섭 (FBG/EFPI) 복합 센서를 이용하여 여러 가지 복합재료 적층판의 성형과정 동안 발생하는 변형률과 온도를 동시에 모니터링하였다. 일방향 적층판, 대칭 직교 적층판, 그리고 평직 적층판에 대하여 각각 두개씩의 FBG/EFPI 센서를 방향과 위치를 달리하여 삽입하고 오토클레이브 내에서의 성형 동안 복합재료 적층판 내부의 두 지점에서의 성형변형률과 온도를 실시간으로 측정하였다. 이러한 실험들을 통해 FBG/EFPI 센서는 보합재료 구조물 성형시의 스마트 모니터링에 효율적임을 알 수 있었다.

Maneuvering Target Tracking Using Error Monitoring

  • Fang, Tae-Hyun;Park, Jae-Weon;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.329-334
    • /
    • 1998
  • This work is concerned with the problem of tracking a maneuvering target. In this paper, an error monitoring and recovery method of perception net is utilized to improve tracking performance for a highly maneuvering tar-get. Many researches have been performed in tracking a maneuvering target. The conventional Interacting Multiple Model (IMM) filter is well known as a suboptimal hybrid filter that has been shown to be one of the most cost-effective hybrid state estimation scheme. The subfilters of IMM can be considered as fusing its initial value with new measurements. This approach is also shown in this paper. Perception net based error monitoring and recovery technique, which is a kind of geometric data fusion, makes it possible to monitor errors and to calibrate possible biases involved in sensed data and extracted features. Both detecting a maneuvering target and compensating the estimated state can be achieved by employing the properly implemented error monitoring and recovery technique. The IMM filter which employing the error monitoring and recovery technique shows good tracking performance for a highly maneuvering target as well as it reduces maximum values of estimation errors when maneuvering starts and finishes. The effectiveness of the pro-posed method is validated through simulation by comparing it with the conventional IMM algorithm.

  • PDF

Hybrid 복합재료 보강 철근콘크리트 보의 광섬유센서를 이용한 부착파괴 모니터링 (Monitoring of Debonding Failure of Reinforced Concrete(RC) Beams Retrofitted with Hybrid Composites by Optical FBG Sensor)

  • 김기수;김종우;조윤범;민정현;신영수;정철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.208-211
    • /
    • 2002
  • In RC beams strengthened with Epoxy-Bonded Fiber, debonding failure happens frequently. Moreover, through the life cycle, it is difficult to recognize clacks and deflections on the surface of concrete members strengthened with Epoxy- Bonded Fiber. For these reasons, we must always monitor the state of RC beams. The Optical FBG sensor is broadly accepted as a structural health monitoring device. The main objective of this paper is that it's possible to monitoring the debonding failure of R.C. beams strengthened with Epoxy-Bonded Fiber. For that, we fixed two Optical FBG sensors at the center of the beam and another two sensors in the end of Epoxy-Bonded Fiber, According to the comparison micro-strain between embeded sensor in concrete and that on the fiber surface, we can find the point which debonding failure occurs

  • PDF

에너지 균등 하이브리드 WSN 프로토콜 기반 국지 기상 관측 시스템 (A Weather Monitoring System for Local Area Using an Energy-balanced Hybrid WSN Protocol)

  • 이형봉;정태윤
    • 대한임베디드공학회논문지
    • /
    • 제9권4호
    • /
    • pp.193-203
    • /
    • 2014
  • This paper implements a weather monitoring system based on wireless sensor network. The wireless sensor network protocol proposed in this paper adopts a TDMA styled MAC. The protocol is designed to balance the energy consumption among sensor nodes. Other purposes of the protocol are to avoid the hidden terminal problem in 2-hop star topology, and to allow a CSMA styled communication in a given time slot to support emergent messages. Also, this paper develops the hardware of sensor node, gateway and electric generator based on solar and windy energy. The test results on the implemented system show that the time slot of each node is shifted in circular manner to balance the waiting time for transmission, and the reliability of wireless communication is over 99%.

Rapid full-scale expansion joint monitoring using wireless hybrid sensor

  • Jang, Shinae;Dahal, Sushil;Li, Jingcheng
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.415-426
    • /
    • 2013
  • Condition assessment and monitoring of bridges is critical for safe passenger travel, public transportation, and efficient freight. In monitoring, displacement measurement capability is important to keep track of performance of bridge, in part or as whole. One of the most important parts of a bridge is the expansion joint, which accommodates continuous cyclic thermal expansion of the whole bridge. Though expansion joint is critical for bridge performance, its inspection and monitoring has not been considered significantly because the monitoring requires long-term data using cost intensive equipment. Recently, a wireless smart sensor network (WSSN) has drawn significant attention for transportation infrastructure monitoring because of its merits in low cost, easy installation, and versatile on-board computation capability. In this paper, a rapid wireless displacement monitoring system, wireless hybrid sensor (WHS), has been developed to monitor displacement of expansion joints of bridges. The WHS has been calibrated for both static and dynamic displacement measurement in laboratory environment, and deployed on an in-service highway bridge to demonstrate rapid expansion joint monitoring. The test-bed is a continuous steel girder bridge, the Founders Bridge, in East Hartford, Connecticut. Using the WHS system, the static and dynamic displacement of the expansion joint has been measured. The short-term displacement trend in terms of temperature is calculated. With the WHS system, approximately 6% of the time has been spent for installation, and 94% of time for the measurement showing strong potential of the developed system for rapid displacement monitoring.