• Title/Summary/Keyword: Hybrid measurement system

Search Result 210, Processing Time 0.038 seconds

New approaches of Indoor Environmental Control for Energy Saving-Adaptive Model (에너지절감을 도모하는 실내 온열환경 제어논리-Adaptive Model)

  • Song, Doo-Sam;Kato, Shinsuke
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.838-846
    • /
    • 2006
  • The purpose of this study to develop the air-conditioning system that adopts adaptive model as an indoor climate control logic for energy saving. The adaptive model using the ability of human thermal adaptation could be expected to alleviate the indoor set-point temperature compared with the past heat-balance model. Especially, in case of hybrid air-conditioning system coupled with natural ventilation and heating/cooling system, the adaptive model can be describe the thermal comfort of inhabitant who stay at hybrid system controlled buildings with accuracy. In this paper, the concept of adaptive model will be described and the results of a continuous measurement on the actual thermal experiences and behaviors of thermal adaptation for office worker will be reported.

  • PDF

Convergence of Initial Estimation Error in a Hybrid Underwater Navigation System with a Range Sonar (초음파 거리계를 갖는 수중복합항법시스템의 초기오차 수렴 특성)

  • LEE PAN MOOK;JUN BONG HUAN;KIM SEA MOON;CHOI HYUN TAEK;LEE CHONG MOO;KIM KI HUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.78-85
    • /
    • 2005
  • Initial alignment and localization are important topics in inertial navigation systems, since misalignment and initial position error wholly propagate into the navigation systems and deteriorate the performance of the systems. This paper presents the error convergence characteristics of the hybrid navigation system for underwater vehicles initial position, which is based on an inertial measurement unit (IMU) accompanying a range sensor. This paper demonstrates the improvement on the navigational performance oj the hybrid system with the range information, especially focused on the convergence of the estimation of underwater vehicles initial position error. Simulations are performed with experimental data obtained from a rotating ann test with a fish model. The convergence speed and condition of the initial error removal for random initial position errors are examined with Monte Carlo simulation. In addition, numerical simulation is conducted with an AUV model in lawn-mowing survey mode to illustrate the error convergence of the hybrid navigation System for initial position error.

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.

Measurement of local wind and solar radiation for a hybrid power generation system design, Busan, Korea

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.799-806
    • /
    • 2013
  • As a first step to develop the hybrid power generation system, on this study, the time-variable resources of wind and solar radiation of Yeongdo, Busan, Korea had been measured during June and July 2013. And the quantity of generated wind power and solar photovoltaic had also been measured during the same period. It is found out that the wind mainly flew from southwest at the average speed of 2 m/s during 2 months. And it is clear that, because of the low wind velocity, the wind quality to generate the power seems not enough at this area. Meanwhile solar radiation was measured every daytime (6:00~19:00) and the peak solar radiation occurred around 12:00~14:00. And it is clear that the time-based variations of quantity of generated power were proportional to the variations of these resources, respectively. As a proposal, these 2 natural energies can be combined as resources of a hybrid system, because these 2 patterns are not overlapped so much on time base.

The Virtual Robot Arm Control Method by EMG Pattern Recognition using the Hybrid Neural Network System (혼합형 신경회로망을 이용한 근전도 패턴 분류에 의한 가상 로봇팔 제어 방식)

  • Jung, Kyung-Kwon;Kim, Joo-Woong;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1779-1785
    • /
    • 2006
  • This paper presents a method of virtual robot arm control by EMG pattern recognition using the proposed hybrid system. The proposed hybrid system is composed of the LVQ and the SOFM, and the SOFM is used for the preprocessing of the LVQ. The SOFM converts the high dimensional EMG signals to 2-dimensional data. The EMG measurement system uses three surface electrodes to acquire the EMG signal from operator. Six hand gestures can be classified sufficiently by the proposed hybrid system. Experimental results are presented that show the effectiveness of the virtual robot arm control by the proposed hybrid system based classifier for the recognition of hand gestures from EMG signal patterns.

A Performance Estimation of Ground Source Heat Pump System Used both for Heating and Snow-melting (난방.융설 겸용 지열원 히트펌프시스템의 운전성능 평가)

  • Choi, Deok-In;Kim, Joong-Hun;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • This study proposes a hybrid geothermal system combined with heating mode and snow-melting mode for winter season in order to increase the annual operating efficiency of the GSHP(Ground Source Heat Pump). The purpose of this study is to get effectiveness of the hybrid geothermal system by the site experiments. In case of snow-melting only mode, the GSHP COP is 0.7 higher than system COP in average. And in case of hybrid mode, heating GSHP COP is 0.5 higher than snow-melting GSHP COP. And it is also found out that all COP obtained through measurement periods is higher than nominal COPs given by GSHP manufacturer. As a conclusion, it is clear that the proposed hybrid geothermal system is expected as a highly efficient system.

Optical Fiber-Based Hybrid Nerve Measurement System for Static and Dynamic Behavior of Structures (구조물의 정적 및 동적 거동 모니터링을 위한 광섬유 기반 하이브리드 신경망 계측 시스템)

  • Park, Young-Soo;Song, Kwang-Yong;Jin, Seung-Seop;Park, Young-Hwan;Kim, Sung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.33-40
    • /
    • 2020
  • Various studies have been conducted on the structural health monitoring using optical fiber. Optical fibers can be used to measure multiple and distributed strain. Among the optical fiber sensors, FBG sensor has advantages of dynamic response measurement and high precision, but the number of measurement points is limited. Distributed fiber sensors, represented by distributed Brillouin sensors, usually have more than 1000 measurement points, but the low sampling rate makes dynamic measurements impossible. In this study, a hybrid nerve sensor system using only the advantages of the FBG sensor and the distributed Brillouin sensor has been proposed. Laboratory experiments were performed to verify the proposed system, and the accuracy and reproducibility were verified by comparing with commercial sensors. Applying the proposed system, dynamic response ambient measurements are used to evaluate the global state of the structure. When an abnormal condition is detected, the local condition of the structure is evaluated by static response measurement using the distributed measurement system. The proposed system can be used for efficient structural health monitoring.

Development of Coaxial Monitoring System in Laser Arc Hybrid Welding for Automotive Body Application (자동차 차체 적용을 위한 레이저-아크 하이브리드 용접의 동축 모니터링 시스템 개발)

  • Park, Young-Whan;Rhee, Se-Hun;Kim, Cheol-Hee
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.9-16
    • /
    • 2009
  • In this paper, the coaxial monitoring system to capture image of weld pool was developed in laser-arc hybrid welding. In order to obtain the reliable image, green laser was used as a illumination system and measuring components such as band pass filter, ND (Neutral Density) filter and shutter speed was designed and optimized. Using this monitoring system, weld pool images were captured according to laser power, welding speed, welding current and interspace between laser and arc through the experiment. ANOVA (Analysis of Variation) was carried out to identify the influence of process variables on bead widths extracted from captured images of monitoring system. Welding speed and current were major factor to affect weld pool.