• Title/Summary/Keyword: Hybrid learning

Search Result 566, Processing Time 0.033 seconds

An Adaptive Fast Expansion, Loading Statistics with Dynamic Swapping Algorithm to Support Real Time Services over CATV Networks

  • Lo Chih-Chen, g;Lai Hung-Chang;Chen, Wen-Shyen E.
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.432-441
    • /
    • 2006
  • As the community antenna television (CATV) networks becomes ubiquitous, instead of constructing an entirely new broadband network infrastructure, it has emerged as one of the rapid and economic technologies to interconnecting heterogeneous network to provide broadband access to subscribers. How to support ubiquitous real-time multimedia applications, especially in a heavy traffic environment, becomes a critical issue in modern CATV networks. In this paper, we propose a time guaranteed and efficient upstream minislots allocation algorithm for supporting quality-of-service (QoS) traffic over data over cable service interface specification (DOCSIS) CATV networks to fulfill the needs of realtime interactive services, such as video telephony, video on demand (VOD), distance learning, and so on. The proposed adaptive fast expansion algorithm and the loading statistics with dynamic swapping algorithm have been shown to perform better than that of the multimedia cable network system (MCNS) DOCSIS.

On-line Adaptive Neuro-Fuzzy Control using Conditional Fuzzy Clustering (조건부적인 퍼지 클러스터링을 이용한 온-라인 적응 뉴로-퍼지 제어)

  • Shin, D.C.;Kwak, K.C.;Jeun, B.S.;Kim, J.G.;Ryu, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.960-962
    • /
    • 1999
  • The main idea of the proposed neuro-fuzzy system is conditional clustering whose main objective is to develop clusters preserving homogeneity of the clustered patterns with regard to their similarity in the input space as well as their respective values assumed in the output space. In the proposed neuro-fuzzy system, the structure identification is used with conditional fuzzy clustering, the parameter identification carried out by the hybrid learning scheme using back-propagation and total least squares.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter (적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF

Advance Neuro-Fuzzy Modeling Using a New Clustering Algorithm (새로운 클러스터링 알고리듬을 적용한 향상된 뉴로-퍼지 모델링)

  • 김승석;김성수;유정웅
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.536-543
    • /
    • 2004
  • In this paper, we proposed a new method of modeling a neuro-fuzzy system using a hybrid clustering algorithm. The initial parameters and the number of clusters of the proposed system are optimally chosen simultaneously with respect to the process of regression, which is a unique characteristics of the proposed system. The proposed algorithm presented in this work improves the overall performance of the proposed a neuro-fuzzy system by choosing a proper number of clusters adaptively according the characteristics of given data. The process of clustering is performed by deciding on the number of classes, which yields the property of convergence of the system. In experiments, the superiority of the proposed neuro-fuzzy system is demonstrated, especially the process of optimizing parameters and clustering of learning speed.

On-line Estimation of DNB Protection Limit via a Fuzzy Neural Network

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.222-234
    • /
    • 1998
  • The Westinghouse OT$\Delta$T DNB protection logic heavily restricts the operation region by applying the same logic for a full range of operating pressure in order to maintain its simplicity. In this work, a fuzzy neural network method is used to estimate the DNB protection limit using the measured average temperature and pressure of a reactor core. Fuzzy system parameters are optimized by a hybrid learning method. This algorithm uses a gradient descent algorithm to optimize the antecedent parameters and a least-squares algorithm to solve the consequent parameters. The proposed method is applied to Yonggwang 3&4 nuclear power plants and the proposed method has 5.99 percent larger thermal margin than the conventional OT$\Delta$T trip logic. This simple algorithm provides a good information for the nuclear power plant operation and diagnosis by estimating the DNB protection limit each time step.

  • PDF

Research of Gesture Recognition Technology Based on GMM and SVM Hybrid Model Using EPIC Sensor (EPIC 센서를 이용한 GMM, SVM 기반 동작인식기법에 관한 연구)

  • CHEN, CUI;Kim, Young-Chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.11-12
    • /
    • 2016
  • SVM (Support Vector machine) is powerful machine-learning method, and obtains better performance than traditional methods in the applications of muti-dimension nonlinear pattern classification. For the case of SVM model training and low efficiency in large samples, this paper proposes a combination of statistical parameters of the GMM-UBM (Universal Background Model) model. It is very effective to solve the problem of the large sample for the SVM training. The experiment is carried on four special dynamic hand gestures using the EPIC sensors. And the results show that the improved dynamic hand gesture recognition system has a high recognition rate up to 96.75%.

  • PDF

Hybrid Video Streming using SVC based on Reinforcement Learning in SDN (SDN에서 SVC를 이용한 강화 학습 기반 하이브리드 비디오 스트리밍 기법)

  • Ahn, Joonbeom;Yeom, sanggil;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.114-117
    • /
    • 2017
  • Scalable Video Coding(SVC)은 효율적인 스트리밍을 제공하기 위해 제안된 비디오 코딩 방식으로 비디오 파일을 계층적으로 구분을 하여 기초 계층에 향상 계층을 추가하여 비디오의 해상도, 프레임 재생율 그리고 화질을 개선시킬 수 있다. 현재 Software Defined Networing(SDN) 환경에서 SVC를 이용한 다양한 라우팅 기법 연구가 진행되고 있다. 본 논문은 SDN 환경에서 네트워크 상태에 따라 하나 또는 여러 개의 경로로 전송을 하는 하이브리드 비디오 스트리밍을 제안한다. 제안 기법에서 경로의 선택은 SVC의 계층별로 진행한다. 제안 기법을 통해 비디오 세그먼트의 손실율을 줄여 높은 QoE를 제공할 수 있고 비디오의 끊김 현상을 최소화 할 수 있다.

Speed Estimation and Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 속도 추정 및 제어)

  • Nam, Su-Myeong;Lee, Hong-Gyun;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.17-19
    • /
    • 2005
  • This paper considers the design and implementation of novel technique of speed estimation and control for IPMSM using learning mechanism-fuzzy neural network(LM-FNN) and artificial neural network (ANN) control. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new hybrid Intelligent control

  • PDF

Radial Basis Function Neural Networks (RBFNN) and p-q Power Theory Based Harmonic Identification in Converter Waveforms

  • Almaita, Eyad K.;Asumadu, Johnson A.
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.922-930
    • /
    • 2011
  • In this paper, two radial basis function neural networks (RBFNNs) are used to dynamically identify harmonics content in converter waveforms based on the p-q (real power-imaginary power) theory. The converter waveforms are analyzed and the types of harmonic content are identified over a wide operating range. Constant power and sinusoidal current compensation strategies are investigated in this paper. The RBFNN filtering training algorithm is based on a systematic and computationally efficient training method called the hybrid learning method. In this new methodology, the RBFNN is combined with the p-q theory to extract the harmonics content in converter waveforms. The small size and the robustness of the resulting network models reflect the effectiveness of the algorithm. The analysis is verified using MATLAB simulations.