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Abstract

In this paper, two radial basis function neural networks (RBFNNs) are used to dynamically identify harmonics content in
converter waveforms based on the p-q (real power-imaginary power) theory. The converter waveforms are analyzed and the types
of harmonic content are identified over a wide operating range. Constant power and sinusoidal current compensation strategies
are investigated in this paper. The RBFNN filtering training algorithm is based on a systematic and computationally efficient
training method called the hybrid learning method. In this new methodology, the RBFNN is combined with the p-q theory to
extract the harmonics content in converter waveforms. The small size and the robustness of the resulting network models reflect
the effectiveness of the algorithm. The analysis is verified using MATLAB simulations.
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I. INTRODUCTION

With the proliferation of nonlinear loads in power sys-
tems, harmonic pollution has become a serious problem that
affects the power quality in both transmission and distri-
bution systems. The problems caused by harmonics include
the malfunctioning of fuses or circuit breakers relays, the
heating of conductors and motors, insulation degradation, and
communication interference [1]–[3].

Passive filters have been used to compensate for harmonic
voltages and currents. Even though passive filters are cheap
and easy to operate, they have a low harmonic bandwidth,
can be subjected to resonance, have a large size, and are
affected by source impedance [4]. However, active power
filters (APF), which are more dynamic, have been introduced
as an effective means to overcome the problems associated
with passive filters. An APF measures the distorted signal
and based on a harmonic detection algorithm, decomposes
the distorted signal into its fundamental component and other
harmonic components. The active filter then uses a power
electronics based circuit to

compensate for the harmonic components, the reactive
power, and any other distortion (such as unbalanced wave-
forms). Harmonic detection techniques have been extensively
studied. They can be categorized into three main techniques;
(i) time domain filters, (ii) frequency domain filters, and (iii)
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artificially intelligent techniques [5]–[8]. With time domain
filters there is a tradeoff between the attenuation and the phase
delay (the higher the attenuation the higher the phase delay
and vice versa), and a faster transition time can result in
oscillations [7]. The main problem with frequency domain
filters is that they are not real-time filters [7]. Artificially
intelligent filters have been introduced to overcome the dis-
advantages of time and frequency domain filters. The three
main techniques used in artificially intelligent filtering are
(i) adaptive linear neuron (ADALINE), (ii) the popular back
propagation neural networks (BPNN), and (iii) radial basis
neural networks (RBFNN). The ADALINE is used as an
online harmonics identifier and its performance depends on
the number of harmonics included in its structure. The con-
vergence of the ADALINE slows as the number of harmonics
included increases and it is also subject to falling into a local
minima [9], [10]. The BPNN on the other hand, deals with the
harmonic detection problem as a pattern recognition problem.
It uses offline supervised training to identify selected harmon-
ics. However, the long training time required in the BPNN and
the chance of falling into local minima are always present [11],
[12]. The RBFNN has several advantages over the ADALINE
and the BPNN. It is capable of approximating highly nonlinear
functions, its structural nature facilitates the training process,
because the training can be done in a sequential manner, and
the use of local approximation can give better generalization
capabilities [11], [12]. Although the RBFNN has been used for
harmonic detection, the number of hidden neurons is still large
and it still uses an algorithm similar to that of the BPNN. This
makes RBFNN networks subject to the same problem found
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Fig. 1. Structure of RBFNN Network.

Fig. 2. Block Diagram for the RBFNN Hybrid Learning Process.

in the BPN [9].
In this paper, the RBFNN has been used to identify the total

harmonic content in power electronics converter waveforms
based on the p-q theory [13]. The novelty of this method is
the use of the RBFNN training technique based on a separate
and sequential method called the hybrid leaning process. In
this method, the centers of the RBFNN were selected based on
the K-means clustering method. The weights of the networks
are found based on the direct inversion method. In the p-
q theory, the total real power (p) contains the constant real
component (p̄)due to the fundamental components of the
voltage and the current plus the oscillating part (p̃)due to
all of the other harmonics. In a similar fashion, the reactive
power (q) has two similar components; q̄ and q̃. In this paper,
the oscillating power components p̃ and q̃ are extracted using
the RBFNN. Decomposing the active and reactive powers into
their components enables a high flexibility in the compensation
strategies, as will be shown later in this paper. The results
show that the algorithm used for the RBFNN is very effective
in terms of the size of the network and requires a short training
time.

II. RBFNN ALGORITHM

A. Structure of the RBFNN

The RBFNN structure consists of three different main
layers, as shown in Fig. 1. One is an input layer (source
nodes with the inputs I1, I2,.., IN), one is a hidden layer (has
K neurons), and one is an output layer (with the outputs y1,
y2,.., ym). The input-output mapping consists of two different
transformations; a nonlinear transformation from the input
layer to the hidden layer and a linear transformation from
the hidden to the output layer. The connections between the
input layer and the hidden layer are called centers and the
connections between the hidden layer and output layer are
called weights [11], [12].

The most common radial basis function used in the RBFNN
is given by:

φi (x) = exp

[
− (x− ci)

T (x− ci)

2σ2
i

]
, i = 1,2, . . . ,K. (1)

Fig. 3. Steady-State Active Power Waveform.

Fig. 4. The Block Diagram for the Input and Output signals for the RBFNNN
model.

This is a Gaussian basis function, where ϕ i is the output of
the ith hidden neuron, x is the input vector data sample (I1,
I2,. . . ,IN) (could be the training, the actual, or the test data), ci
is the centers vector of the ith hidden neuron (ci1, ci2,..., ciN),
σ i is the normalization factor, and (x-ci)T (x-ci) is the square
of the vector (x-ci) [11] – [12]. The ith output node yi is a
linear weighted summation of the outputs of the hidden layer
and is given by:

yi = wT
i φ(x), i = 1,2, . . . .,m (2)

where wi is the weight vector of the output node and φ(x) is
the vector of the outputs from the hidden layer (augmented
with an additional bias which assumes a value of 1).

B. Training Algorithm of the RBFNN

The block diagram shown in Fig. 2 illustrates one of the
RBFNN training processes called the hybrid learning process
[14]. The hybrid learning process has two different stages; (i)
finding suitable locations for the radial basis functions centers
of the hidden neurons [12], [14] and (ii) finding the weights
between the hidden layer and output layer. In the first stage,
the K-means [12], [14] clustering algorithm is used to locate
the centers in the input data space regions, where significant
data are present (shown as I in Fig. 2). In the second stage
(shown as II in Fig. 2) the weights between the hidden layer
and the output layer are found by the linear matrix inversion
algorithm based on the least-square solution, which minimizes
the sum-squared error function [15].

The weights matrix w is given by:

w = A−1ΦT D (3)

where D is the desired output vector for l training data sample
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sets and is given by:

D =




d(x1)
...

d(x j)
...

d(xl)




(4)

where d(x j) describes the output vector corresponding to the
jth training data samples vector (x j). Φ is a matrix where each
element ϕ i(x j), is a scalar value and represents the output of
the ith hidden neuron for the jth training data samples vector
(x j). The Φ matrix for l training data samples is given by:

Φ =




φ1(x1) φ2(x1) .... φK(x1)
φ1(x2) φ2(x2) ... φK(x2)

.

.
.
.

...
.
.

φ1(xl) φ2(xl) ... φK(xl)



. (5)

A−1 is the variance matrix and is given by:

A−1 =
[
ΦT Φ

]−1
. (6)

One of the advantages of this method when compared to
other training algorithms is that it does not need iterations in
the training phase. What it needs is the matrix inversion shown
in (6), which requires a negligible time to be calculated.

III. METHODOLOGY

A. p-q theory

A summary of the p-q theory and an example are shown in
Appendix I.

B. RBFNN Method

1) Building the Delay Buffer: Figure 3 shows an example
of an instantaneous active power waveform.

Data is sampled at a constant rate and is passed through a
first-input-first-output (FIFO) buffer to create a delayed vector
a with length of N, which match the length of the input vector
of the RBFNN. At any instant the FIFO buffer will contain N
data samples. As an illustration for the building of the FIFO
buffer, the first training data sample x1 is given by:

x1 =




p11 = p1
p21 = 0

...
pN1 = 0


 . (7)

The second training data sample x2 is given by:

x2 =




p12 = p2
p22 = p1
...
pN2 = 0


 . (8)

(a)

(b)

Fig. 5. Window of Training Data for the Active Power RBFNN Network.

Fig. 6. p- RBFNN Network Performance for Recalling Process

The jth training data sample is given by:

x j =




p1 j = p j
p1 j = p j−1

...
pN2 = p j−N−1


 . (9)

The training data for l training data samples is written in
matrix form and given by:

X =
[

x1 x2 · · · xl
]
=




p11 p12 · · · p1l
p21 p22 · · · p2l
...

... · · ·
...

pN1 pN2 · · · pNl


 . (10)

2) Finding the Desired Output: For each x j the fast Fourier
transform (FFT) is used to find the constant (DC) part of
the active power (which represents the power due to the
fundamental components). The constant part obtained from
applying the FFT on x’s data becomes the desired output
mentioned in (4).

FFT{x j}= d j
DC. (11)

Note that only the DC component of the FFT is taken, which
is a scalar quantity, not a vector as generalized by (4), since
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(a)

(b)

(c)

Fig. 7. Active Power Consumed by the Three-Phase Rectifier. (a) Total. (b)
DC Part. (c) Oscillating Part.

the number of output nodes is one. The desired output vector
obtained from applying the FFT on each x j is given by:

D =




d1
DC

...
d j

DC

...
dl

DC



. (12)

The training data samples from matrix X of (10) is the same
data used by the K-means clustering algorithm to find the
centers vectors (c1, c2,. . . , cK) used in (1). The Gaussian radial
basis function of (1) is then used to find the matrix φ of the
hidden neurons outputs. The weights vector w can then be
found using (3).

In a similar fashion the steps used in section III (A1 and
A2) to train the network, to extract the DC part of the active
power, are repeated for the imaginary power.

3) Embedding the RBFNN Model in the System: After ob-
taining the RBFNN models parameters (centers and weights)
for both the active and imaginary powers, from the training
process, the RBFNN model is now ready to be tested. Fig.
4 shows a block diagram for the input and output signals of
the RBFNN model for the active power network. A similar
second network is build for the imaginary power.

Generally there are two different stages of testing; the
recalling testing and the generalization testing. The recalling
process includes applying the same training data as a test
signal for the obtained RBFNN network.

The generalization test includes applying new data that has
never been seen before by the neural network model. The

(a)

(b)

(c)

Fig. 8. FFT for the Power Signals in Fig.9. (a) Total. (b) DC Part. (c)
Oscillating Part.

(a)

(b)

Fig. 9. Window of Training Data for the Imaginary Power RBFNN Network.

Fig. 10. q-RBFNN Network Performance for Recalling Process.
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(a)

(b)

(c)

Fig. 11. Imaginary Power exchanged between the Phases. (a) Total. (b) DC
Part. (c) Oscillating Part.

(a)

(b)

(c)

Fig. 12. FFT for the Power Signals in Fig.9. (a) (a) Total. (b) DC Part. (c)
Oscillating Part.

test is performed by embedding the RBFNN model in an
environment that can apply a delayed power vector as an input
for the RBFNN model. Then compare the output from the
RBFNN model with the actual output.

Suppose the following power signal is obtained from the
system:

P(t)= 3V I1 cos(θ 1)−3V I5 cos(4wt−θ 5)+3V I7 cos(6wt−θ 7)

To make such a signal suitable for the RBFNN model, it
should be sampled at the same constant rate used for the

training. Then a delayed vector should be constructed in the
same way as illustrated in Appendix I. An example of the input
vector is:

xk =




p1k
p2k
...

pNk




Once the delayed vector is obtained, the output of the
RBFNN model can be calculated based on (1) and (2) to obtain
the RBFNN output yk. Then the output ykis compared with the
actual output p(k) and the oscillating part can be easily found
by:

p̃(k) = p(k)− p̄(k)

IV. SIMULATION RESULTS

The three-phase nonlinear load has the following parame-
ters:

Voltage Source: 400 V L-L,60 Hz , source resistance 0.06
mΩ, source inductance 2 µH.

Nonlinear Load: Three-Phase thyristor rectifier with R-L
load (450 kW active power, 200 kvar reactive power).

Sampling Rate: 128 sample/ cycle
RBFNN for p: 2 Hidden neurons, sigma (σ ) = 71.5
RBFNN for q: 4 Hidden neurons, sigma (σ ) = 42.5
The Number of inputs for p and q networks (N) = 64
The Number of Outputs for p and q networks = 1
The value of σ depends on the input training data. This

value was obtained by running the simulation several times
and selecting the value that minimizes the RBFNN network
error.

A. Constant Active Power extraction

Fig. 5(a) shows a window from the training set for the
active power obtained by the algorithm illustrated in Section
III. In this training set the input for the RBFNN network is
the delayed vectors of the total active power (N=64), which is
calculated based on the p-q theory. Fig. 5(b) shows the desired
output, which is the DC component of the delayed vector.
Fig. 6 shows the performance of the network for the recalling
process. The mean square error for the recalling process for
the p-RBFNN is 1.49*10−7 for normalized data.

The p-RBFNN network model is tested by embedding the
models inside a nonlinear SIMULINKrmodel. The RBFNN
is used to extract the DC component of the active power,
consumed by a thyristor rectifier with a R-L load. The total
active power is shown in Fig. 7(a). It is clear that it has two
components; a DC part, due to fundamental components, and
an oscillating part, due to the harmonic content of the load
current. Fig. 7(b) shows the output of the embedded RBFNN
network, which is the DC part of the active power, with a
minor ripple. The oscillating parts of the active power are
obtained by subtracting the DC part from the total part as
shown in Fig. 7(c). Fig. 8 shows the FFT analysis of the active
power waveforms shown in Fig. 7. These results emphasize the
robustness of the RBFNN network in decomposing the active
power waveform.
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(a)

(b)

(c)

Fig. 13. phase A Source Current for Constant Power Strategy. (a) Before
compensation. (b) Reference Current. (c) After Compensating.

B. Constant Imaginary Power extraction

Using a method similar to the one used for the active power,
the imaginary power is decomposed into two parts; a DC part
and an oscillating part using another RBFNN model. Fig. 9(a)
shows a window from the training set for the imaginary power.
In this training set the input for the RBFNN network is the
delayed vectors of the total imaginary power (N=64). Fig.
9(b) shows the desired output, which is the DC component
of the delayed vector. Fig. 10 shows the performance of the
network for the recalling process. The mean square error of
the recalling process for the q-RBFNN is 1.12 *10−5 for
normalized data.

The q-RBFNN is used to extract the DC component of the
imaginary power, consumed by a thyristor rectifier with a R-
L load. The total active power is shown in Fig. 11 (a). It
is clear that it has two components; a DC part, due to the
fundamental components, and an oscillating part, due to the
harmonic content of the load current. Fig. 11 (b) shows the
output of the embedded RBFNN network, which is the DC
part of the active power, with a minor ripple. The oscillating
parts, of the active power are obtained by subtracting the DC
part from the total part as shown in Fig. 11(c). Fig. 12 shows
the FFT analysis for the active power waveforms shown in
Fig. 7. The results emphasize the robustness of the q-RBFNN
network in decomposing the imaginary power waveform.

C. Constant Power Strategy

Figures 13 and 14 show the results of applying the constant
power strategy where Fig.13(a) shows the phase A source
current before compensation. Figure 13(b) shows the compen-
sating signal (reference current). This signal is added to the
source current as an output from an active power filter,

(a)

(b)

Fig. 14. Source Power for Constant Power Strategy. (a) Active Power. (b)
Imaginary Power.

and the result is shown in Fig. 13(c). It is clear that the
source current does not contain harmonics because it is a pure
sinusoidal waveform. Fig. 14(a) shows the source active power
and Fig. 14(b) shows the source imaginary power. It is clear
from Fig. 11 that the source delivers only a constant active
power after the filter is ON.

D. Sinusoidal Current Strategy
Fig. 15 and Fig. 16 show the results of applying the

sinusoidal current strategy, where Fig. 15 (a) shows the phase
A source current before compensation. Figure 15(b) shows the
compensating signal (reference current). This signal is added
to the source current as an output from an active power filter,
and the result is shown in Fig. 15(c). Figure 16(a) shows
the source active power and Fig. 16 (b) shows the source
imaginary power.

The major difference between the two methods is that the
active power filter in the first case needs to compensate for the
oscillating part of the active power and the whole imaginary
power, resulting in a constant source active power, with a
currents that are in-phase with the supply voltages. In the
second case, the active filter needs to compensate only for the
oscillating parts of the active and imaginary powers, resulting
in sinusoidal source currents that are not in-phase with the
source voltages.

E. Disturbance Rejection
The disturbance rejection robustness of the RBFNN network

is investigated with a step change in the firing angle of the
Thyristor bridge, which will change the harmonics content
level. Fig. 17 shows the response of the active power RBFNN
network to this change. Figure 17 shows the fast response to
this change (around half a cycle) and the absence of overshoot.
Figure 18 shows the response of the active power RBFNN
network to this change. The smooth transition reflects the
robustness of the RBFNN to reject disturbances.



928 Journal of Power Electronics, Vol. 11, No. 6, November 2011

(a)

(b)

(c)

Fig. 15. phase A Source Current for Sinusoidal current Strategy. (a) Before
compensation. (b) Reference Current. (C) After Compensating.

(a)

(b)

Fig. 16. Source Power for Sinusoidal Current strategy. (a) Active Power. (b)
Imaginary Power.

V. CONCLUSIONS

In this paper, the RBFNN algorithm was used to extract
and identify harmonics content in converter waveforms. The
RBFNN training algorithm was based on the hybrid learning
algorithm, which requires a short training time when compared
to the conventional training methods. Two RBFNN networks
were used to decompose the active power and the imagi-
nary power into their DC and oscillating components. The
algorithms were based on the p-q power theory, which gives
flexibility in the choosing of a compensation strategy. The
constant power and sinusoidal current compensation strategies
were investigated. The results show good performance for

Fig. 17. p- RBFNN Network Response for a Firing Angle Step Change from
10o -20o. DC Power (Dashed), Oscillating Power (Solid).

(a)

(b)

Fig. 18. q-RBFNN Network Response for a Firing Angle Step Change from
10o -20o.(a) DC Imaginary Power. (b) Oscillating Imaginary Power.

decomposing the active and imaginary power. The algorithms
performed very well in both transient and steady-state con-
ditions. The simulations also showed that the methodology
outlined here can be used to dynamically identify harmonics
and for the elimination of harmonics using active power filters.

APPENDIX I

p-q Theory
Consider the three-phase controlled rectifier with an R-L

load shown in Fig. 3. A uniformly distributed random gating
signal is applied to the three-phase rectifier. The voltages and
currents of the rectifier are sampled and used to calculate the
instantaneous active power p and imaginary power q based on
the p-q theory. The Clark transformation is used to transform
the voltages and currents from the a-b-c domain to the α-β
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Fig. 19. Schematic Diagram for Three-Phase controlled Converter.

domain, as shown in (13) and (14).
[

vα
vβ

]
=

√
2
3

[
1 −1/

2 −1/
2

0
√

3/
2 −

√
3/

2

]


va
va
va


 (13)

[
iα
iβ

]
=

√
2
3

[
1 −1/

2 −1/
2

0
√

3/
2 −

√
3/

2

]


ia
ia
ia


 . (14)

Then p and q are calculated from the α-β domain voltages
and the current as shown in (15).

[
p
q

]
=

[
vα vβ
−vβ vα

][
iα
iβ

]
. (15)

The instantaneous p and q can be decomposed into the
following:

p = p̃+ p̄ (16)

q = q̃+ q̄ (17)

here p̄ is the constant part of p (which comes from the
fundamental components), p̃ is the oscillating part of p (which
comes from the harmonics), and in similar fashion q̄ and q̃ are
the constant and oscillating parts of q.

In this paper two compensation strategies have been applied
[13]. The first is called the constant power strategy. In this
strategy the oscillating part of the active power p̃ is extracted.
The resulting reference power signal contains p̃ plus power
losses (ploss) (always present), and the total imaginary power
q is shown as pre f and qre f in (18) and (19), respectively.

pre f = p̃+ ploss (18)

qre f = q = q̃+ q̄. (19)

The second compensation strategy, used in this paper, is
called the sinusoidal current strategy. Here both of the os-
cillating parts p̃ and q̃ are extracted. The resulting reference
power signal contains p̃ plus ploss (additional power losses
are present) and q̃ is shown as pre f and qre f in (20) and (21),
respectively.

pre f = p̃+ ploss (20)

qre f = q̃. (21)

The reference current in the α-β domain can be calculated
by: [

iαre f

iβ re f

]
=

[
vα vβ
−vβ vα

]−1 [
iα
iβ

]
(22)




iare f

ibre f
icre f


=

√
2
3




1 0

−1/
2
√

3/
2

−1/
2 −

√
3/

2



[

iαre f

iβ re f

]
. (23)

Example
Consider a three-phase system with a sinusoidal balanced

voltage and a balanced nonlinear load as follows:

V a(t) =
√

2V sin(wt),V b(t) =
√

2V sin(wt− 2π
3
),

V c(t) =
√

2V sin(wt +
2π
3
)

Ia(t)=
√

2I1sin(wt−θ 1)−
√

2I5sin(5wt−θ 5)+
√

2I7sin(7wt−θ 7)

Ib(t) =
√

2I1sin(wt−2π
3
−θ 1)−

√
2I5sin(5wt+

2π
3
−θ 5)

+
√

2I7sin(7wt−2π
3
−θ 7)

ic(t) =
√

2I1sin(wt+
2π
3
−θ 1)−

√
2I5sin(5wt−2π

3
−θ 5)

+
√

2I7sin(7wt+
2π
3
−θ 7)

Using (13) and (14) the voltage and current in the α-β
domain can be calculated as:

V α(t) =
√

3V sin(wt),V β (t) =−
√

3V cos(wt)

iα(t) =
√

3I1sin(wt−θ 1)−
√

3I5sin(5wt−θ 5)+
√

3I7sin(7wt−θ 7)

iα(t) =
√

3I1cos(wt−θ 1)−
√

3I5cos(5wt−θ 5)+
√

3I7cos(7wt−θ 7)

The instantaneous p and q are calculated from (15) as:

P(t) = 3V I1cos(θ 1)−3V I5cos(4wt−θ 5)+3V I7cos(6wt−θ 7)

q(t) = 3V I1sin(θ 1)−3V I5sin(4wt−θ 5)+3V I7sin(6wt−θ 7)

It is clear that both p and q have two parts; constant parts
( p̄ and q̄) and oscillating parts (p̃ and q̃), where:

p̄ = 3V I1cos(θ 1), q̄ = 3V I1sin(θ 1)

p̃ =−3V I5cos(4wt−θ 5)+3V I7cos(6wt−θ 7)

q̃ =−3V I5sin(4wt−θ 5)+3V I7sin(6wt−θ 7)

The reference values are then computed from (22) and (23).
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