• Title/Summary/Keyword: Hybrid learning

Search Result 539, Processing Time 0.03 seconds

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

Introduction of Team-Based Learning Based Building Construction Hybrid Curriculum (팀기반학습 기반 건축시공 하이브리드 교육과정 도입방안)

  • Kim, Jae-Yeob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.351-352
    • /
    • 2023
  • In order to respond to changes in the industrial environment such as the 4th industrial revolution, university education also needs active educational innovation efforts. This study proposed a construction construction hybrid curriculum that can actively utilize online education in the direction of educational innovation in domestic universities. The hybrid curriculum was based on online learning through lecture videos used in team-based learning. The hybrid curriculum additionally allows learners to choose their learning methods. In a hybrid class, learners can choose the class participation method they want from offline classroom or online real-time. Hybrid classes are considered to strengthen learners' options and take a step forward in learner-centered education.

  • PDF

A Study on the Implementation of Hybrid Learning Rule for Neural Network (다층신경망에서 하이브리드 학습 규칙의 구현에 관한 연구)

  • Song, Do-Sun;Kim, Suk-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.60-68
    • /
    • 1994
  • In this paper we propose a new Hybrid learning rule applied to multilayer feedforward neural networks, which is constructed by combining Hebbian learning rule that is a good feature extractor and Back-Propagation(BP) learning rule that is an excellent classifier. Unlike the BP rule used in multi-layer perceptron(MLP), the proposed Hybrid learning rule is used for uptate of all connection weights except for output connection weigths becase the Hebbian learning in output layer does not guarantee learning convergence. To evaluate the performance, the proposed hybrid rule is applied to classifier problems in two dimensional space and shows better performance than the one applied only by the BP rule. In terms of learning speed the proposed rule converges faster than the conventional BP. For example, the learning of the proposed Hybrid can be done in 2/10 of the iterations that are required for BP, while the recognition rate of the proposed Hybrid is improved by about $0.778\%$ at the peak.

  • PDF

Hybrid Neural Networks for Pattern Recognition

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.637-640
    • /
    • 2011
  • The hybrid neural networks have characteristics such as fast learning times, generality, and simplicity, and are mainly used to classify learning data and to model non-linear systems. The middle layer of a hybrid neural network clusters the learning vectors by grouping homogenous vectors in the same cluster. In the clustering procedure, the homogeneity between learning vectors is represented as the distance between the vectors. Therefore, if the distances between a learning vector and all vectors in a cluster are smaller than a given constant radius, the learning vector is added to the cluster. However, the usage of a constant radius in clustering is the primary source of errors and therefore decreases the recognition success rate. To improve the recognition success rate, we proposed the enhanced hybrid network that organizes the middle layer effectively by using the enhanced ART1 network adjusting the vigilance parameter dynamically according to the similarity between patterns. The results of experiments on a large number of calling card images showed that the proposed algorithm greatly improves the character extraction and recognition compared with conventional recognition algorithms.

Implementation of Hybrid Neural Network for Improving Learning ability and Its Application to Visual Tracking Control (학습 성능의 개선을 위한 복합형 신경회로망의 구현과 이의 시각 추적 제어에의 적용)

  • 김경민;박중조;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1652-1662
    • /
    • 1995
  • In this paper, a hybrid neural network is proposed to improve the learning ability of a neural network. The union of the characteristics of a Self-Organizing Neural Network model and of multi-layer perceptron model using the backpropagation learning method gives us the advantage of reduction of the learning error and the learning time. In learning process, the proposed hybrid neural network reduces the number of nodes in hidden layers to reduce the calculation time. And this proposed neural network uses the fuzzy feedback values, when it updates the responding region of each node in the hidden layer. To show the effectiveness of this proposed hybrid neural network, the boolean function(XOR, 3Bit Parity) and the solution of inverse kinematics are used. Finally, this proposed hybrid neural network is applied to the visual tracking control of a PUMA560 robot, and the result data is presented.

  • PDF

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

Ensemble Model for Urine Spectrum Analysis Based on Hybrid Machine Learning (혼합 기계 학습 기반 소변 스펙트럼 분석 앙상블 모델)

  • Choi, Jaehyeok;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1059-1065
    • /
    • 2020
  • In hospitals, nurses are subjectively determining the urine status to check the kidneys and circulatory system of patients whose statuses are related to patients with kidney disease, critically ill patients, and nursing homes before and after surgery. To improve this problem, this paper proposes a urine spectrum analysis system which clusters urine test results based on a hybrid machine learning model consists of unsupervised learning and supervised learning. The proposed system clusters the spectral data using unsupervised learning in the first part, and classifies them using supervised learning in the second part. The results of the proposed urine spectrum analysis system using a mixed model are evaluated with the results of pure supervised learning. This paper is expected to provide better services than existing medical services to patients by solving the shortage of nurses, shortening of examination time, and subjective evaluation in hospitals.