• Title/Summary/Keyword: Hybrid junction

Search Result 51, Processing Time 0.03 seconds

Fabrication of Organic-Inorganic Nano Hybrid Superlattice Thin Films by Molecular Layer Deposition

  • Cho, Bo-Ram;Yang, Da-Som;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.115-115
    • /
    • 2011
  • Nano hybrid superlattices consisting of organic and inorganic components have great potential for creation of new types of functional material by utilizing the wide variety of properties which differ from their constituents. They provide the opportunity for developing new materials with new useful properties. Herein, we fabricated new type of organic-inorganic nano hybrid superlattice thin films by a sequential, self-limiting surface chemistry process known as molecular layer depostion (MLD) combined with atomic layer deposition (ALD). An organic layer was formed at $150^{\circ}C$ using MLD with repeated sequintial adsorption of Hydroquinone and Titanium tetrachloride. A $TiO_2$ inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Titanium tetrachloride and water. Using UV-Vis spectroscopy, we confirmed visible light absorption by LMCT. And FTIR spectroscopy and XPS were employed to determine the chemical composition. Ellipsometry and TEM analysis were also used to confirm linear growth of the film versus number of MLD cycles at all same temperature. In addition, p-n junction diodes domonstrated in this study suggest that the film can be suitable for n-type semiconductors.

  • PDF

Development of Enhanced Interleaved PFC Boost Converter typed 650V Intelligent Power Module for up to 10kW HVAC Systems (10kW급 HVAC 시스템을 위한 Enhanced Interleaved PFC Boost 컨버터 형태의 650V IPM 개발)

  • Lee, Kihyun;Hong, Seunghyun;Kim, Taehyun;Jeong, Jinyong;Kwon, Taesung
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.536-538
    • /
    • 2018
  • This paper introduces an enhanced interleaved (IL) PFC (Power Factor Correction) boost converter typed 650V Intelligent Power Module (IPM), which is fully optimized hybrid IGBT converter modules; Silicon (Si) IGBT and Silicon Carbide (SiC) diode, for up to 10kW HVAC (Heating, Ventilation, and Air Conditioning) systems. It utilizes newly developed $4^{th}$ Generation Field Stop (FS) trench IGBTs, $EXTREMEFAST^{TM}$ anti-paralleled diodes, SiC Junction Barrier Schottky (JBS) diodes, Bridge rectifiers, Multi-function LVIC, and Built-in thermistor provide good reliable characteristics for the entire system. This module also takes technical advantage of DBC (Direct Bonded Copper) substrate for the better thermal performance. It is shown that the Si IGBT/SiC diode hybrid IL PFC module can achieve excellent EMI performance and greatly enhance the power handling capability or switching frequency of various applications compared to the Si IGBT/Diode. This paper provides an overall description of the newly developed 650V/50A Hybrid SiC IL PFC IPM product.

  • PDF

Experimental Investigations for Thermal Mutual Evaluation in Multi-Chip Modules

  • Ayadi, Moez;Bouguezzi, Sihem;Ghariani, Moez;Neji, Rafik
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1345-1356
    • /
    • 2014
  • The thermal behavior of power modules is an important criterion for the design of cooling systems and optimum thermal structure of these modules. An important consideration for high power and high frequency design is the spacing between semiconductor devices, substrate structure and influence of the boundary condition in the case. This study focuses on the thermal behavior of hybrid power modules to establish a simplified method that allows temperature estimation in different module components without decapsulation. This study resulted in a correction of the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on mutual thermal coupling between different chips of the hybrid structure. A new experimental technique for thermal mutual evaluation is presented. Notably, the classic analysis of thermal phenomena in these structures, which was independent of dissipated power magnitude and boundary conditions in the case, is incorrect.

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

Pcp-2 Interacts Directly with Kinesin Superfamily KIF21A Protein (Kinesin superfamily KIF21A와 직접 결합하는 Pcp-2의 규명)

  • Park, Hye-Young;Kim, Sang-Jin;Ye, Sung-Su;Jang, Won-Hee;Lee, Sang-Kyeong;Park, Yeong-Hong;Jung, Yong-Wook;Moon, Il-Soo;Kim, Moo-Seong;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1059-1065
    • /
    • 2008
  • KIF21A is a member of the Kinesin superfamily proteins (KIFs), which are microtubule-dependent molecular motors, anterograde axonal transporters of cargoes. Recently, congenital fibrosis of the extraocular muscles 1 (CFEOM1) has been shown to result from a small number of recurrent heterozygous missense mutations of KIF21A. CFEOM1 results from the inability of mutated KIF21A to successfully deliver cargoes to the development of the occulo-motor neuron or neuromuscular junction. Here, we used an yeast two-hybrid system to identify a protein that interacts with the WD-40 repeat domain of KIF21A and found a specific interaction with Purkinje cell protein-2 (Pcp-2), a small protein also known as L7. Pcp-2 protein bound to the WD-40 domain of KIF21A and KIF21B but not to other KIFs in yeast two-hybrid assays. In addition, this specific interaction was also observed in the glutathione S-transferase pull-down assay. An antibody to Pcp-2 specifically co-immunoprecipitated KIF21A associated with Pcp-2 from mouse brain extracts. These results suggest that Pcp-2 may be involved in the KIF21A-mediated transport as a KIF21A adaptor protein.

THE EFFECT OF RESTORATIVE MATERIALS ON THE STRESS DISTRIBUTION OF CLASS V COMPOSITE RESIN RESTORATIONS - A 3D FINITE ELEMENT INVESTIGATION (수복재료가 5급 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원유한요소법적 연구)

  • Ahn, Hyoung-Ryoul;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.20-29
    • /
    • 2006
  • The purpose of this study was to analyze the stress distribution aspect of unrestored and restored combined shape (wedge shape occulusally and saucer shape gingivally) class V cavity, which found frequently in clinical cases. A maxillary second permolar restored with a combined shape class V composite restorations were modeled using the three dimensional finite element method. Static occlusal load of 170 N was applied on lingual incline of buccal cusp at the angle of $45^{\circ}$ with the longitudinal axis of the tooth. And three dimensional finite element analysis was taken by ANSYS (Version 6.0, Swanson Analysis System Co., Houston, U.S.A) program which represent the stress distribution on unrestored and restored cavity wall and margin. The conclusions were as follows. 1. Compared to the unrestored cavity, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced and in restored cavity. 2. Von Mises stress at the occlusal and cervical cavity margin and wall were increased in restored cavity in comparison with the unrestored cavity. 3. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced more than in the flowable restoration. 4. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the occlusal and cervical cavity margin and wall were increased more than in the flowable restoration.

MWCNTs/V2O5 Nanowire Hetero-junction Actuator Devices (탄소나노튜브/V2O5 나노선 헤테로 구동소자 특성연구)

  • Lee Kang-Ho;Yee Seong-Min;Park So-Jeong;Huh Jung-Hwan;Kim Gyu-Tae;Park Sung-Joon;Ha Jeong-Sook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.250-254
    • /
    • 2006
  • Hetero-junction sheet actuator composed of carbon nanotubes and $V_{2}O_5$ nanowires were demonstrated in a bimetal configuration. The successive filtration of $V_{2}O_5$ nanowire solution followed by carbon nanotube dispersed water solution in the same way produced a dark-gray colored sheet. A significant actuation was observed in sodium chloride electrolyte solution with a bending direction to the carbon nanotube side at the positive bias voltage against the copper counter-electrode. As the frequency of the applied voltage increased, the amplitudes decreased, indicating a rather slow response of the hetero-film actuator in the electrolyte solution. The hybrid structure enabled an easy fabrication of the film actuator with the enhanced efficiencies.

Design of high speed InAlGaAs/InGaAs HBT structure by Hybrid Monte Carlo Simulation (Hybrid Monte Carlo 시뮬레이션에 의한 고속 InAlGaAs/InGaAs HBT의 구조 설계)

  • 황성범;김용규;송정근;홍창희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.66-74
    • /
    • 1999
  • InAlGaAs/InGaAs HBTs with the various emitter junction gradings(xf=0.0-1.0) and the modified collector structures (collector- I;n-p-n, collector-II;i-p-n) are simulated and analyzed by HMC (Hybrid Monte Carlo) method in order to find an optimum structure for the shortest transit time. A minimum base transit time($ au$b) of 0.21ps was obtainsed for HBT with the grading layer, which is parabolically graded from $x_f$=1.0 and xf=0.5 at the emitter-base interface. The minimum collector transit time($\tau$c) of 0.31ps was found when the collector was modified by inserting p-p-n layers, because p layer makes it possible to relax the electric field in the i-type collector layer, confining the electrons in the $\Gamma$-valley during transporting across the collector. Thus InAlGaAs/InGaAs HBT in combination with the emitter grading($x_f$=0.5) and the modified collector-III showed the transit times of 0.87 psec and the cut-off frequency (f$\tau$) of 183 GHz.

  • PDF

Extraction of Three-Dimensional Hybrid City Model based on Airborne LiDAR and GIS Data for Transportation Noise Mapping (교통소음지도 작성을 위한 3차원 도시모델 구축 : 항공 LiDAR와 GIS DB의 혼용 기반)

  • Park, Taeho;Chun, Bumseok;Chang, Seo Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.933-938
    • /
    • 2014
  • The combined method utilizing airborne LiDAR and GIS data is suggested to extract 3-dimensional hybrid city model including roads and buildings. Combining the two types of data is more efficient to estimate the elevations of various types of roads and buildings than using either LiDAR or GIS data only. This method is particularly useful to model the overlapped roads around the so called spaghetti junction. The preliminary model is constructed from the LiDAR data, which can give wrong information around the overlapped parts. And then, the erratic vertex points are detected by imposing maximum vertical grade allowable on the elevated roads. For the purpose of efficiency, the erratic vertex points are corrected through linear interpolation method. To avoid the erratic treatment of the LiDAR data on the facades of buildings 2 meter inner-buffer zone is proposed to efficiently estimate the height of a building. It is validated by the mean value (=5.1%) of differences between estimated elevations on 2 m inner buffer zone and randomly observed building elevations.

  • PDF

Synthesis of Electroplated 63Ni Source and Betavoltaic Battery (63Ni 도금선원 및 베타 전지 제조)

  • Uhm, Young Rang;Yoo, Kwon Mo;Choi, Sang Mu;Kim, Jin Joo;Son, Kwang Jae
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.167-170
    • /
    • 2015
  • Radioisotope (Nuclear) battery using $^{63}Ni$ was prepared as beta cell. The electroplated $^{63}Ni$ on Ni foil is fabricated, and beta cell and photovoltaic hybrid battery was designed to use at both day and night in space project. A Ni-plating solution is prepared by dissolving metal particles including $^{62}Ni$ and $^{63}Ni$ from neutron irradiation of ($n,{\gamma}$). Electroplating solution of a chloride bath consists on nickel ions in HCl, $H_3BO_3$, and KOH. The deposition was carried out at current density of $10mA\;cm^{-2}$. The prepared beta source was attached on a PN junction and measured I-V properties. The power output at activity of 0.07 mCi and 0.45 mCi were 0.55 pW and 2.69 nW, respectively.