• Title/Summary/Keyword: Hybrid electric vehicle(HEV)

Search Result 146, Processing Time 0.023 seconds

A Study on Educational Contents of Hybrid Electric Vehicle Using Real Time Monitoring System (실시간 모니터링 시스템을 이용한 하이브리드 자동차 교육용 콘텐츠에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.443-448
    • /
    • 2018
  • Recently, Hybrid Electric Vehicle(: HEV) is in the spotlight to global warming caused by carbon dioxide and emission reduction. HEV consists of a combination of mechanical engine and electric motor system. The flow of energy required to drive a HEV depends on the driving conditions of the vehicle. In this paper, we study the contents of HEV education using real-time monitoring system. A real-time monitoring system consisting of hardware and virtual programs is used to simulate the overall operation of a HEV through simulations according to driving conditions and to explain how to learn through hardware.

Design and Analysis a Drive-train for a Parallel-type Hybrid Electric Vehicle (병렬형 하이브리드 자동차의 구동장치 설계 및 해석)

  • Kim, Dong-Hyun;Ahn, Sung-Jun;Choi, Jae-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.770-777
    • /
    • 2012
  • This paper deals with the design and modal characteristics analysis of a drive-train for a paralleltype hybrid electric vehicle (HEV). The function of the drive-train system (DTS) in the HEV combines or divides the torque and velocity from the internal combustion engine along with the induction motor. The system consists of a compound planetary gear and unit's electromagnetic clutch to provide the operation modes such as Engine Only (EO), Electric Vehicle (EV), and Hybrid Electric Vehicle (HEV) modes. In order to investigate the characteristics of the velocity and torque flow for the system, dynamic models of the HEV with DTS are derived from the prototype DTS. The performance of the derived dynamic models is evaluated by both computer simulations and experiments according to each mode.

Potential Impacts and Energy Cost of Grid-Connected Plug-in Electric Vehicles (전력망 충전식 전기자동차의 영향 및 에너지비용)

  • Lee, Kyoung-Ho;Han, Seung-Ho
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.92-102
    • /
    • 2010
  • Plug-in hybrid electric vehicle(PHEV) is a hybrid electric vehicle (HEV) with more added battery capacity that can be recharged from the electric power grid. Plug-in battery electric vehicle(PBEV) is a pure electric vehicle that uses only electric motor using electricity from battery that recharged from the power grid. PHEV and PBEV requires recharging of batteries in the vehicles from electric power grid. Recently, PHEVs and PBEV are being developed around the world. It is important to understand how these electric vehicles affect power demands and carbon dioxide emissions. From vehicle customer viewpoint, running energy cost will be imporatnt factor to consider. This paper analyzes the potential impacts of PHEVs and PBEVs on electric power demand, and associated CO2 emissions in 2020 with an projection that the vehicles will be penetrated with 10% market share. Energy costs for the vehicles are also calculated and compared with the conventional combustion vehicle.

Component Sizing for the Hybrid Electric Vehicle (HEV) of Our Own Making Using Dynamic Programming (동적계획법을 이용한 자작 하이브리드 자동차의 용량 매칭)

  • Kim, Gisu;Kim, Jinseong;Park, Yeong-il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.576-582
    • /
    • 2015
  • Generally, the fuel economy of hybrid electric vehicle (HEV) is effected by the size of each component. In this study the fuel economy for HEV of our own making is evaluated using backward simulator, where dynamic programming is applied. In a competition, the vehicle is running through the road course that includes many speed bumps and steep grade. Therefore, the new driving cycle including road grade is developed for the simulation. The backward simulator is also developed through modeling each component. A performance map of engine and motor for component sizing is made from the existing engine map and motor map adapted to the HEV of our own making. For optimal component sizing, the feasible region is defined by restricting the power range of power sources. Optimal component size for best fuel economy is obtained within the feasible region through the backward simulation.

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Operation Modes of a Power Split Hybrid Electric Vehicle (동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션)

  • Ahn Kuk-Hyun;Cho Sung-Tae;Lim Won-Sik;Park Yeong-Il;Lee Jang-Moo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.23-27
    • /
    • 2006
  • The power split hybrid powertrain is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

Operation Modes of a Power Split Hybrid Electric Vehicle (동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션)

  • Ahn, Kuk-Hyun;Cho, Sung-Tae;Lim, Won-Sik;Park, Yeong-Il;Lee, Jang-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.547-550
    • /
    • 2006
  • The power split hybrid power train is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

Improve the performance of 360V-class super-capacitors module through cell monitoring and active cell balancing (360V급 회생제동용 슈퍼캐패시터 모듈의 셀모니터링과 액티브 밸렌싱을 통한 성능개선)

  • Lee, Hee-Bum;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.83-86
    • /
    • 2011
  • 최근 에너지/환경의 문제로 HEV(Hybrid Electric Vehicle)이 대두되고 있는데, HEV를 위한 대표적인 기술로서 제동시 에너지로 발전하여 전기를 회수하는 회생제동이 있다. 회생제동기술은 HEV 뿐만 아니라 건설기기, 하이브리드 버스, 전철, 엘리베이터 등에 폭넓게 활용이 가능하다. 회생제동용 에너지 저장원으로서는 고출력 및 환경특성이 우수한 슈퍼캐패시터가 적합하며, 단일 셀이 아닌 수십 ~ 수백 개의 셀이 모듈로 사용되는 만큼, 모듈화 설계 기술이 필요 하다. 수백 개의 셀을 모듈화하기 위해서 개별 셀의 전압을 모니터링 하는 기술과 충방전 시 밸렌싱 하는 기술, 사용환경에 따라 열 관리 기술이 필요하며, 이들 기능을 수행할 수 있는 통합 시스템을 구비하여 안정성과 성능 향상을 하고자 한다.

  • PDF