• 제목/요약/키워드: Hybrid composite membrane

검색결과 26건 처리시간 0.03초

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

ORGANIC - INORGANIC COMPOSITE MEMBRANE FOR POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Shul, Yong-Gun;Kim, Hyun-Jong;Ahn, Ji-Eun;Han, Hak-Soo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.37-40
    • /
    • 2003
  • Mesoporous zeolite - heteropolyacid-polymer hybrid membrane was prepared by sol-gel processes to make a proton conducting membrane. The crystallinity of mesoporous zeolite in composite membrane was increased with contents of heteropolyacid. Proton conductivity obtained from impedance measurements increases with contents of heteropolyacid, about 10$^{-3}$ S/cm in ca. 1.5 Wt% heteropolyacid.

  • PDF

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • 제1권3호
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials

  • Kim, Dae Sik;Park, Ho Bum;Nam, Sang Young;Rhim, Ji Won;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.44-54
    • /
    • 2004
  • Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.

고분자전해질 연료전지용 유기/무기 복합 전해질 (Organic / inorganic composite membrane for Polymer Electrolyte Membrane Fuel Cell)

  • 최성호;홍현실;이흥찬;김유미;김건
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 연료전지심포지움 2003논문집
    • /
    • pp.169-171
    • /
    • 2003
  • Organic/inorganic hybrid membranes have been prepared and evaluated as polymer electrolytes in a polymer electrolyte membrane fuel cell (PEMFC). Previously, partially fluorinated poly (arylenether) was synthesized and the polymer was sulfonated by fuming sulfuric acid$(30\%\;SO_3)$. Modification of these polymers with coupling agent and inorganic materials was carried out to prepare membranes. Membranes cast from these materials were investigated in relation to the proton conductivity and weight loss at the room temperature. It was found that these membranes had a higher conductivity of $10^{-2}\;Scm^{-1}$ at the room temperature. But inorganic materials have leaked out from the hybrid membrane. If this problem is resolved, organic/inorganic hybrid membranes will become satisfactory Polymer electrolytes for the PEMFC.

  • PDF

술폰화 폴리아릴렌에테르술폰/개질된 그라핀 복합막의 이온전도도 및 메탄올 투과도 (Proton Conductivity and Methanol Permeability of Sulfonated Poly(aryl ether sulfone)/Modified Graphene Hybrid Membranes)

  • 허훈;김득주;남상용
    • 멤브레인
    • /
    • 제21권3호
    • /
    • pp.247-255
    • /
    • 2011
  • 본 연구에서는 뛰어난 전도도와 물리적 강도를 가지는 그라핀의 고른 분산성을 얻기 위하여 두 가지 다른 방법으로 그라핀을 개질시켰다. 그리고 SPAES/그라핀 복합막은 각기 다른 함량을 첨가하여 제조되었으며 그라핀의 제조방법과 첨가된 그라핀의 함량에 따른 성능을 비교하였다. 복합막의 모폴로지는 SEM을 이용하여 관찰하였으며 개질된 그라핀의 화학적 구조는 FT-IR과 TGA를 사용하여 분석되었다. 그라핀의 함량변화가 0.5~3.0 wt% 일 때 복합막의 이온전도도와 메탄올 투과도를 측정하였으며 $80^{\circ}C$, 100% 가습상태에서 SPAES/그라핀 복합막의 이온전도도(0.216 S/cm)는 순수한 SPAES 전해질 막보다 높은 이온전도도(0.098 S/cm)를 나타내었으며 그라핀의 함량이 1.5 wt%까지 증가될 때 메탄올 투과도는 감소되었다.

PVDF/h-BN hybrid membranes and their application in desalination through AGMD

  • Moradi, Rasoul;Shariaty-Niassar, Mojtaba;Pourkhalili, Nazila;Mehrizadeh, Masoud;Niknafs, Hassan
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.221-231
    • /
    • 2018
  • A new procedure to produce poly(vinylidene fluoride)/boron nitride hybrid membrane is presented for application in membrane distillation (MD) process. The influence of hexagonal boron nitride (h-BN) incorporation on the performance of the polymeric membranes is studied through the present investigation. For this aim, h-BN nanopowders were successfully synthesized using the simple chemical vapor deposition (CVD) route and subsequent solvent treatments. The resulting h-BN nanosheets were blended with poly(vinylidene fluoride) (PVDF) solution. Then, the prepared composite solution was subjected to phase inversion process to obtain PVDF/h-BN hybrid membranes. Various examinations such as scanning electron microscopy (SEM), wettability, permeation flux, mechanical strength and liquid entry pressure (LEP) measurements are performed to evaluate the prepared membrane. Moreover, Air gap membrane distillation (AGMD) experiments were carried out to investigate the salt rejection performance and the durability of membranes. The results show that our hybrid PVDF/h-BN membrane presents higher water permeation flux (${\sim}18kg/m^2h$) compared to pristine PVDF membrane. In addition, the experimental data confirms that the prepared nanocomposite membrane is hydrophobic (water contact angle: ${\sim}103^{\circ}$), has a porous skin layer (>85%), as well competitive fouling resistance and operational durability. Furthermore, the total salt rejection efficiency was obtained for PVDF/h-BN membrane. The results prove that the novel PVDF/h-BN membrane can be easily synthesized and applied in MD process for salt rejection purposes.

DEVELOPMENT OF MEMBRANE AND COLD-CONDENSATION PROCESS FOR REMOVAL AND RECOVERY OF VOLATILE ORGANIC COMPOUNDS

  • Kim, Sung-Soo;Lee, Jong-Hwa;Kim, Hyunki;Kim, Sang-Yong
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.69-72
    • /
    • 2003
  • Volatile organic compounds (VOC) cause air pollution problem and deterioration of atmosphere of petrochemical and fine chemical plants. Hybrid process of membrane and cold-condensation were developed and it effectively removed and recycled the VOC. Operation parameters of the process were optimized to attain hish removal and recycle of VOC. Composite membranes for organic vapor separation were developed in this work by PDMS coating and plasma polymerization on polypropylene and polysulfone support membranes. PDMS and various silicone monomers were tested for several organic vapors such as benzene, toluene, TCE, and HCFC, which are produced in petrochemical and fine chemical industry and causes air pollution problems if are released to atmosphere. Composite membranes prepared in this work showed appreciable performance in terms of organic vapor removal and reuse. Performance variation of the membranes was correlated with their surface characteristics.

  • PDF

다양한 관능기를 포함한 MMT/SPAES 복합막의 직접 메탄올 연료전지용 적용을 위한 특성평가 (Characterization of SPAES Composite Membrane Containing Variously Funtionallized MMT for Direct Methanol Fuel Cell Application)

  • 김득주;황해영;김세종;홍영택;김형준;임태훈;남상용
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.42-50
    • /
    • 2011
  • The Montmorillonite (MMT) in the polymer matrix is expected to reduce methanol permeability due to the tortous path formed by dispersed silicate layers. However, the polymer composite membranes containing non-proton conducting inorganic particle tend to show low proton conductivity. To solve this problem, we used an ion exchange method to prepare functionalized MMT with various silane coupling agents. The modified MMT was randomly dispersed in sulfonated poly (arylene ether sulfone) (SPAES) matrix to prepare SPAES/modified MMT composite membranes. The performances of hybrid membranes for DMFCs application were investigated. The SPAES/modified composite membrane showed increased proton conductivity compared with the non-modified MMT composite membrane. However, the methanol permeability of the SPAES/modified membrane was higher than that of the non-modified MMT.

Titanium Dioxide Nanoparticles filled Sulfonated Poly(ether ether ketone) Proton Conducting Nanocomposites Membranes for Fuel Cell

  • Kalappa, Prashantha;Hong, Chang-Eui;Kim, Sung-Kwan;Lee, Joong-Hee
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2005
  • This paper presents an evaluation of the effect of titanium dioxide nanoparticles in sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree of 57%. A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticles content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with standard nafion membrane.

  • PDF