• Title/Summary/Keyword: Hybrid collector

Search Result 66, Processing Time 0.022 seconds

System Development of Removing Dust and Odor from Manufacturing Process of FRP Products (FRP제품 가공시 발생하는 분진 및 악취 제거 시스템 개발)

  • Yun, Huy Kwan;Kim, Jae Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.547-552
    • /
    • 2009
  • When fiber reinforced plastics (FRP) products are manufactured, dust and odor materials are inevitably generated in a workplace. To improve the bad condition of the workshop, we developed the Hybrid Bag Filter attached activated carbon fiber (ACF) and installed the system at two companies producing FRP goods. In order to raise the efficiency of dust collection, we set the ducts both on the ceiling and at the bottom of the wall and according to the circumstances of the workshop's space, moving dust collector also adopted as a different type of flexible duct. Pulse Jet Type Bag Filter is also equipped to operate the system more effectively, for the improved fine environment because of high dust removal efficiency. Finally, we investigated the removal tendency of the dust and odor when operating the System of Hybrid Bag Filter.

The hybrid heat pump with solar energy for heating (태양열이용 하이브리드 난방 열펌프시스템)

  • Kim, Ji-Young;Ko, Gwang-Soo;Kang, Byung-Chan;Park, Youn-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.173-178
    • /
    • 2005
  • Recently. we interested in renewable energy due to cost increase of the crude oil, etc. In this study solar assisted hybrid heat pump system that uses the solar heat and air as heat source analyzed by experimentally.'rho system could runs at dual mode. One is thermal storage mode of solar energy at day time and the other is heat pump mode with low temperature air as heat source at night time. In case of setting temperature over the limited range. high temperature water heated at the solar energy collecting tubes supplied to the storage tank. As results. it is founded that the heat pump performance Is higher than general heat pump which using the only air as a heat source. The developed system could be used as main healing equipment for the panel heating for the residential house.

  • PDF

Time-Aware Wear Leveling by Combining Garbage Collector and Static Wear Leveler for NAND Flash Memory System

  • Hwang, Sang-Ho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we propose a new hybrid wear leveling technique for NAND Flash memory, called Time-Aware Wear Leveling (TAWL). Our proposal prolongs the lifetime of NAND Flash memory by using dynamic wear leveling technique which considers the wear level of hot blocks as well as static wear leveling technique which considers the wear level of the whole blocks. TAWL also reduces the overhead of garbage collection by separating hot data and cold data using update frequency rate. We showed that TAWL enhanced the lifetime of NAND flash memory up to 220% compared with previous wear leveling techniques and our technique also reduced the number of copy operations of garbage collections by separating hot and cold data up to 45%.

Solar Absorption Cooling System applicable to Educational Facilities (교육시설에 적용 가능한 태양열 흡수식 냉각 시스템)

  • Youn, Sung-Min;Paek, In-Su;Han, Young-Tae;Nam, Hyo-Gab
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2011
  • Performance of a small-capacity solar absorption cooling system was investigated experimentally. Ten sets of evacuative-tube solar-heat collectors and a 5 kW single-stage absorption cooler were combined to produce a hybrid cooling system. The performance of the cooling system was measured using a tim-coil unit installed in a small plastic storage. It was found from the test on a sunny day of May that when the temperature of the hot water supplied from the solar collectors to the generator of the absorption cooler reached $60^{\circ}C$, the absorption cooler started cooling and the cold water temperature measured from the fan-coil unit reached $18^{\circ}C$. The COP, which is defined as the ratio of the cooling power to the total electrical power input was higher than 1.0.

  • PDF

DOMAIN DECOMPOSITION ALGORITHM AND ANALYTICAL SIMULATION OF COUPLED FLOW IN RESERVOIR / WELL SYSTEM

  • EWING, RICHARD;IBRAGIMOV, AKIF;LAZAROV, RAYCHO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.71-99
    • /
    • 2001
  • The model and analytical method for solving the problem of coupled fluid flow in the reservoir/well system is presented. The 3-D drainage area is composed of three connected media: the tubing, the annuli as a super conducting collector, and the reservoir itself. To couple these three types of fluid flows a non-overlapping Dirichlet-Neumann domain decomposition method is developed. The method allows us to apply an analytical hybrid simulator for accurate evaluation of the impact of main geometrical and hydrodynamic parameters of the 3-D system on the pressure drop along the horizontal well and its production index.

  • PDF

A Design of Profile Based Generational Garbage Collector in Java (자바에서 프로파일에 기초한 세대기반 가비지 콜렉터 설계)

  • 김일부호;오세만
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.388-390
    • /
    • 1999
  • 자바는 자동 메로리 회수(garbage collection) 방식을 채택한 범용 프로그래밍 언어로 자바 가상머신(JVM)이 설치된 다양한 플랫폼에서 사용되어 지고 있다. 현재 자바에서 사용되는 가비지 콜렉터는 휴지(pause) 시간이 상당히 길어 짧은 응답시간을 요구하는 서버 및 실시간 응용 프로그램에는 적합하지 않은 표시-압축 기법을 사용한다. 이를 보완하기 위해 자바 HotSpotTM 성능 엔진에서 세대기반(generational) 복사 기법에 기반을 둔 혼성(hybrid) 가비지 콜렉터를 사용하고 있으나, 상당히 큰 오버헤드를 보이고 있어 다양한 응용 프로그램의 특성을 수용하기에는 개선의 여지가 많다. 본 논문에서는 세대기반 기법을 기반으로, 자바와 자바 가상머신이 가진 특성들과 실행시간 객체의 타입 및 스택 정보를 이용하는 가비지 콜렉터를 설계한다. 또한, 힙 프로파일 분석기를 구현하고, 이를 통해 응용 프로그램에 적합한 메모리 구조를 분석하고, 가비지 콜렉터에 적용할 수 있도록 한다.

  • PDF

Fabrication of Lignin Nanofibers Using Electrospinning (전기방사를 이용한 리그닌 나노섬유의 제조)

  • Lee, Eunsil;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.372-385
    • /
    • 2014
  • Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

Experimental Study for Thermal Performance of Hybrid Air-Water Heater Using Solar Energy during Heating Medium Working Simultaneously (복합형 태양열 가열기 열매체 동시운전시의 열적 성능에 관한 실험적 연구)

  • Choi, Kwang-Hwan;Yoon, Jung-In;Son, Chang-Hyo;Choi, Hwi-Ung;Kim, Bu-Ahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • With increment on interesting about improving renewable energy efficiency, many research have been conducted and the research about hybrid air-water heater using solar energy that can make heating air and hot water has been conducted also. In this experiment, the temperature difference and thermal efficiency were investigated when two heating medium(air and liquid) was working simultaneously. As a result, thermal efficiency showed 44% to 88% when these heating medium was working simultaneously depending on operation condition and it is better than traditional solar collector. Also possibility of application into building equipment also was confirmed based on temperature and thermal efficiency. But necessity of additional studies about proper operation condition according to purpose of use and heat load was confirmed because change of thermal efficiency by air velocity and flux of liquid was shown a huge difference.

Rechargeable Zn-air Energy Storage Cells Providing High Power Density (고출력.고에너지 밀도의 아연금속-공기전지)

  • Park, Dong-Won;Kim, Jin Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2012
  • Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.