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Abstract. The model and analytical method for solving the problem of coupled fluid
flow in the reservoir/well system is presented. The 3-D drainage area is composed
of three connected media: the tubing, the annuli as a super conducting collector,
and the reservoir itself. To couple these three types of fluid flows a non-overlapping
Dirichlet-Neumann domain decomposition method is developed. The method allows
us to apply an analytical hybrid simulator for accurate evaluation of the impact of
main geometrical and hydrodynamic parameters of the 3-D system on the pressure
drop along the horizontal well and its production index.

1. Introduction

The modern technology in oil and gas recovery requires new models and computa-
tional methods and techniques which take into account geometrical and hydrodynamics
parameters of “small” perturbation. Mostly, this issue reflects the increasing under-
standing of the reservoir’s structure and geometry which make effective the usage so
called ”smart” technology [17]. Many presentations in the recent conference “Horizon-
tal Technology” [28] showed that the technological progress of horizontal well drilling
has been recognized by the petroleum industry as a most efficient technique for reservoir
development and characterization. A distinct property of horizontal wells is a bounded
perforation with significant length in productive layer. At the same time, it is clear
that a high span of perforation of the horizontal well may result in a significant pressure
drop along the well-bore [2, 10, 16, 20, 21, 22, 23, 24, 25, 30]. The mechanics of pres-
sure drop is very complex and is due to various factors, such as completion of the well,
operation conditions (e.g. sand factor), the character of fluid flow inside the horizontal
well and in the reservoir, geometry of the reservoir, hydrodynamic characteristic of the
porous media, etc. These factors may lead to substantial decrease of well/reservoir
conductivity ratio. The pressure drop results in stabilization of the well productivity;
that is, beginning with a certain critical value, further extenuation of the wellbore’s
length does not cause any increase of productivity [8, 10, 24, 25]. It has been noted
[2, 19, 21, 22, 23, 25] that for an accurate evaluation of the pressure drop along the
well a coupled well-bore/reservoir flow model has to be considered. It has been shown
[2] that in a 3-D unbounded reservoir with permeability less than 1-Darcy and laminar
well flow the pressure drop along the well-bore is insignificant. This fact is related to
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the assumption that the well conductivity in case of Poisel’s flow is much higher than
the conductivity in the reservoir and therefore, the pressure along the well changes
weakly. At the same time, the data observed in multiple operating horizontal wells
showed that productivity of these wells does not increase proportionally to the length.
In recent papers (see, e.g. [21, 22, 23, 25]) this effect has been estimated by friction of
the wall and acceleration terms in balance equation. In the present paper a model of a
reservoir/well system composed of a tube of small radius with extremely high (infinite)
conductivity, a intermediate annular zone with high but finite permeability, and the
reservoir itself with low (less than 1 Darcy) permeability (see, Figure 1) is studied. In
the physical sense the model we use takes into account the following phenomena:

(1) fluid flow inside tubing of the well,
(2) fluid flow in a screen and sand pack considered as one media with its own

permeability and
(3) fluid flow in a bounded reservoir limited by top, bottom and external bound-

aries.

This embedded coupled model allows us to take into account the main parameters
that produce pressure drop along the horizontal well. In practice the reservoir’s and
well’s geometrical parameters are incomparable. Therefore, the combined impact of
these parameters on coupled fluid flow inside the well and in the reservoir could not
be efficiently estimated by methods of numerical analysis based on finite difference (fi-
nite element, etc.) approximation of governing equations. Our goal is to accurately
evaluate the impact on well performance of the parameters of: (1) the geometry of the
reservoir/well system, and (2) the hydrodynamic characteristic of fluid flow in three
linked media (well, near well zone, and main part of the reservoir). For this purpose
two analytical models are proposed. The first approach is based on the presentation
of the reservoir pressure distribution in the form of convolution of a Green function
of boundary problem with mixed type (Dirichlet and Neumann) of boundary condi-
tions and with unknown density. For an explicit construction of the Green function, an
alternating Shwartz algorithm is proposed and studied. This algorithm produces a se-
quence of solutions to a Dirichlet problem in a bigger (auxiliary) domain so that their
restrictions to the original domain tends to the Green function of a mixed problem.
Further the discrete density is modeled by means of special coupling conditions on the
wall of the well. The second approach is based on separation of variables, which allows
us to reduce the initial problem to the computation of the Fourier and Fourier-Bessel
coefficients on the boundaries of a cylindrical domain. The first approach accounts
more precisely for the “global parameters” of the well/reservoir system such as size
of the drainage zone, shape factors of the external boundary of the reservoir, well’s
length etc. The second approach is aimed at accurate and explicit evaluation of the
impact of the “local” geometric and hydrodynamic parameters: tubing/casing “diame-
ter”, well/reservoir conductivity ratio etc., on the pressure distribution and production
index. We note, that direct application of these methods is not feasible (impossible).
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Therefore, special domain decomposition algorithms are developed. For convenience,
these two approaches are presented in the paper separately and are applied to different
domains.

The paper is organized as follows: In Section 2 we present the coupled model of a
well/reservoir system and discuss methods for an approximate solution. In Section 3 we
construct an approximation of the Green function that is an important building block in
the numerical method. Further, in Section 4 we discuss the numerical implementation
of the method and the computational results. Finally, in Section 5 we present and
discuss a non-overlapping Schwarz algorithm in a non-homogeneous domain. In the
last section we present an explicit form of the solution and discuss the convergence of
the corresponding iterative method for the Fourier-Bessel coefficients.

2. Coupled Flow Model

Below we present a mathematical model of coupling two single-phase fluid flows: one
inside a cylindrical well of finite length and another one in a bounded homogeneous
porous media (called reservoir). We assume that inside the well the flow is steady-state,
inertia-less, and governed by Stokes equations. The flow in the reservoir obeys Darcy’s
law. The well is assumed to be cased with very dense perforations uniformly distributed
over its surface. At the interface between the well and the reservoir we use a coupling
condition, introduced by Panfilov [26], that expresses a conservation of mass through
the interface. The reservoir’s filtration is in the radial direction to the interface of the
well bore, while the inflow flux can be considered to be continuous across the surface.

2.1. Mathematical Model. In order to formulate the model we first introduce some
necessary notations. The points in the 3-dimensional space R3 are denoted by x =
(x1, x2, x3). The reservoir is considered to be a spherical layer with thickness h:

Ω ≡ B ∩ {x : 0 < x3 < h} ⊂ R3,

where B ≡ B(0, R) = {x : |x| < R} is a ball in R3 with a center at the origin, and |x|
is the Euclidean length of x. The boundary of Ω is denoted by ∂Ω. The well W is a
cylindrical cavity along the x1 axes of constant radius rw and finite length L, i.e.

W ≡ {x : 0 < x1 < L, x2
2 + (x3 − x0

3)
2 < r2

w}, (see, Figure 1)

It is assumed that:
(1) The fluid is incompressible and filtration of flow in the porous media is governed

by Darcy’s law and the equation of continuity:

~w ≡ (w1, w2, w3) = −K

µ
∇p, ∇ · ~w = 0.

Here ~w is vector velocity of fluid filtration and p is the reservoir pressure, K
generally is a symmetrical tensor of permeability with measurable and bounded
coefficients, and the µ is fluid viscosity. We assume that the porous media is
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Figure 1. Resrvoir/Well model

isotropic and homogeneous and the fluid viscosity is constant. Substituting the
expression for the velocity into the equation of continuity we obtain:

(1) ∆p =
3∑

i=1

∂2u(x)
∂x2

i

= 0 in Ω \W.

(2) The following boundary conditions are specified on the boundary ∂Ω: at the
top (x3 = h) and the bottom (x3 = 0) of the reservoir no-flow conditions are
prescribed, while the pressure p is specified by PR = 0 on the external boundary
Γ1 ≡ {x : |x| = R, 0 < x3 < h} of the reservoir.

(3) Inside the well we use a simplified model derived in [26] in terms of the averaged
pressure and velocity over the a cross-section of the well. Let D(x1) = {x : x2

2+
(x3 − x0

3)
2 ≤ r2

w} be a cross section W by a plane orthogonal to the axes x1 at
the point (x1, 0, x0

3), and let S(x1) be its boundary

(2) S(x1) ≡ ∂D(x1) = {(x1, x2, x3) : x2 = rwcosφ, x3 = x0
3 + rwsinφ, 0 ≤ φ < 2π}.

Next, denote by Pa(x1) the average pressure in the well-bore over the disk D(x1)
and by V1(x1) the average component of the velocity of the flow over D(x1) in
the axes x1 direction . It has been shown that under certain assumptions [26]
the fluid flow inside the well W is governed by the following two equations:

(3) V ′
1(x1) = − 2

rw
wr(x1), − 1

µ
P ′

a(x1) =
8
r2
w

V1(x1) +
2
rw

w′r(x1).
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Here wr(x1) is the average of the trace of the radial component of the velocity
over S(x1), namely

(4) wr(x1) = −K

µ

∫

S(x1)

∂p

∂n
ds,

where n is outward normal unit vector to S(x1). Note, that in our case ∂p
∂n = ∂p

∂r
so that the notation wr(x1) is justified.

(4) The radius of the well is more than a hundreds times smaller than the other
linear sizes of the well/reservoir system. That makes it possible to assume that
we can neglect the dependence upon the angular variable φ of the trace of the
reservoir pressure and the normal component of the velocity on S(x1) (defined
by (2)). Therefore, we can use the notation

p(x1, x2, x3)|S(x1) = p̄(x1).

(5) The well pressure for x1 = 0 is a given constant Pw. This end of the well is
called dominated. The opposite end of the well, the point x1 = L, is called
a free end. At this end we specify the average velocity V1, which expresses a
balance of mass. This will lead to the following boundary conditions:

(5) Pa(0) = Pw, V1(L) =
1

πr2
w

∫

D(L)
w1(L, x2, x3)dx2dx3.

(6) The solution inside the well is completely specified by its boundary conditions
while the solution in the reservoir is specified only on the top (x3 = h), bottom
(x3 = 0) and external boundary Γ1. These two problems, called inner and
outer, are coupled via a condition on the well’s interface. In this paper we will
follow the scheme described in [2, 11, 19, 26]. For another approach for coupling
external and internal problem we refer to [22, 25].

On the interface between the porous media and the well the pressure is con-
tinuous, while the velocities are allowed to be discontinuous. In [26] it has been
shown that in this case the average pressure Pa(x1) in the well and the average
of the trace on S(x1) of the pressure in the reservoir denoted by p̄(x1) satisfy
the following interface condition:

(6) p̄(x1) = Pa(x1) +
µ

2rw
(r2

ww′′r (x1)− 4wr(x1)).

The governing equation (3) in the well bore W and the conjugate condition (6) have
been obtained in [26] for Stokes flow by averaging over the well bore cross section. The
solution of the Stokes equations written in the cylindrical coordinate system was sought
in the form of a power series with unknown coefficient depending on x1 determined from
the coupling conditions.
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Figure 2. The well model

2.2. Decomposition of the Initial Problem. Here we propose an iterative method
that reduces the problem of coupling flows in the reservoir (outer flow) and in the well
(inner flow) by the condition (6) on the well/reservoir interface.

We propose the following iterative scheme:
(1) Solve the outer boundary value problem in the reservoir with a given linear dis-

tribution P0 on the well surface; as a result we find: (1) the pressure function
p(x) in the reservoir, (2) the average of the traces of the normal component
wr(x1) of velocity on the lateral surface of the well, and (3) the normal compo-
nent w1(L, x2, x3) of the velocity on the free end of the well.

(2) Using wr(x1) and w1(L, x2, x3), solve the inner problem (3), (5) in W ; as a
result the average pressure distribution Pa(x1) in the well is computed.

(3) Solve

(7) ∆p = 0 in Ω \W

with boundary conditions (6) on the interface S(x1) and the following boundary
conditions on the reservoir’s boundary:

(8) px3 = 0 for x3 = 0, h, p = PR = 0 on Γ1.

(4) Repeat steps 2 and 3 of this process until convergence.

2.3. Solution Methods for the Outer Problem. Without loss of generality we can
assume that PR = 0. Let G(x, ξ) be the Green’s function of the mixed problem (6) –
(8). By applying the theory of Newton’s potential, the pressure function p(x) can be
represented in the form:

(9) p(x) =
∫

W
G(x, ξ)β(ξ) dξ, x ∈ R3.

A classical way to obtain the unknown potential density β(ξ) is: substitute the po-
tential p(x) into the boundary condition (6) (where Pa(x1) is defined from the iteration
procedure) and solve the resulting integral equation. The numerical realization of this
approach is well understood, but extremely expensive since it results in a boundary
element method over a surface in 3-D.

Under the assumption 4 in Section 2.1 we can substantially simplify the solution of
the problem (6) – (8). Namely, we take the density as a function of the ξ1 - variable



ANALYTICAL SIMULATION OF COUPLED FLOW 77

and the singularity of the Green’s function G(x, ξ) is located along the axis x1. This
allows us to use the following approximate construction:

(1) Replace the well W (see, Figure 2) as a sum of a finite number of intervals on
the axes x1 defined by the points 0 = ξ1,0 < ξ1,1 < · · · < ξ1,N = L;

(2) Approximate the potential (9) by taking β as a piecewise constant function over
this partition so that

(10) p(x) =
N∑

1

βi

∫

∆i

G(x, ξ), dξ1, where , ∆i = [ξ1,i, ξ1,i+1];

(3) Find the unknown discrete density (β1, ..., βN ) by taking the equation (6) at
the collocation points (x1,j , rw, 0):

(11) p = Pa(x1,j) +
µ

2rw
(r2

ww′′r (x1,j)− 4wr(x1,j)).

Here x1,j ∈ ∆j is a specific point aimed to minimize the error of the quadrature
formula.

Obviously, the main issue in applying this modification of the boundary element
method is an explicit construction of the Green function G(x, ξ). In an unbounded
reservoir (R = ∞) of finite thickness h the function G(x, ξ) is a superposition of an
infinite number of fundamental solutions of Laplace’s equation [18]. This series does
not converge. In case of a bounded domain such as parallelepiped or cylinder, the
Green’s function with Dirichlet condition on the side of this domain can be represented
as a superposition of the source functions, but this series converge very slowly [7]. To
overcome this difficulty, an iterative method for construction of Green’s function has
been developed in [13, 14]. Here we apply this approach for mixed boundary problems
and general domains. The main idea consists in a symmetric extension of the initial
domain and the construction of a “control” condition on the extended boundary. That
is a restriction in the initial domain of the “source” function generated under “control”
conditions in the extended domain satisfy non-flow conditions on top and bottom of
the reservoir.

3. Green Function Construction

In this section we present an alternating Shwarz Algorithm for mixed boundary
problem. We assume that the domain Ω is the layer between the planes x3 = 0 and
x3 = h (shown on Figure 3).We further use the notations:

∂Ω = Γ1 ∪ Γ2, Γ2 = γ1 ∪ γ2, and Γ1 ⊂ { x | 0 < x3 < h},
where γ1 = {x | x ∈ ∂Ω, x3 = 0} and γ2 = {x | x ∈ ∂Ω, x3 = h} are non empty 2-D
domains. Let G(x, ξ) be the Green function of the mixed boundary problem (positive
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solution of the problem) with a singularity at ξ:

(12)
∆G(x, ξ) = 0 in Ω \ ξ,
Gx3(x, ξ) = 0 on γ1, γ2,
G(x, ξ) = 0 on Γ1.

3.1. Domain Extension (Auxiliary Domains). Assume that there exists symmet-
ric a extension Ω̃ of the domain Ω with respect to γ1 such that (see Figure 3(a)):

• Ω̃ ∩ { x : 0 < x3 < h} ≡ Ω;
• there is a sub domain B+ ⊂ Ω̃, symmetric with respect to γ2 such that

∂B+ ∩ { x : x3 > h} ≡ ∂Ω̃ ∩ { x : x3 > h}.
Denote by

S+
1 = ∂B+ ∩ { x : x3 > h} and S−1 = ∂B̃+ ∩ {x : x3 < h}

the upper and lower boundaries of the domain B+, correspondingly. Further, denote
by

S+
2 = ∂Ω̃ ∩ {x : 0 > x3 > −h} and S−2 = ∂Ω̃ ∩ {x : x3 ≤ −h}

the lower and upper boundaries of the extended domain Ω̃, correspondingly (see, Figure
3(a)).

By construction S+
2 is a mirror image of Γ1, while S−2 is an mirror image of S+

1 with
respect to the boundary symmetric to γ1, and S+

2 is symmetrical with respect to γ1

(see, Figure 3(a)).
In the case when Ω is a spherical layer, the extension represents itself as a ball and

sub domain B+ is a “lens”(see, Figure 3(b)).
Now assume that ξ ∈ Ω is a point of singularity of Green function G(x, ξ). Below

we show that for any point ξ there exists a “symmetric” in Ω̃ and in B+ finite number
of points Ak(ξ) ∈ Ω̃ (the extension of the domain Ω), such that:

(1) the point ξ ∈ Ak(ξ);
(2) the subset of Ak(ξ) that is in B+ is symmetric with respect to γ2;
(3) the whole set Ak(ξ) is symmetric with respect to γ1.

Now, for a given ξ ∈ Ω we construct a set with these properties. For simplicity we
assume that ξ does not belong to S+

1 . Take ξ1 to be the mirror image of ξ with respect
to γ2. The above assumptions guarantee that such a point exists and is in B+. Next,
we add to Ak(ξ) the pair of points η0, η1 in Ω̃ that is a mirror image of points ξ, ξ1 with
respect to γ1 (see Figure 3(b)).

After this step there are three possible cases:

a: η0 ∈ B+ and η1 ∈ B+;
b: η0 ∈ B+ and η1 /∈ B+;
c: η0 /∈ B+ and η1 /∈ B+.
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Figure 3. Auxiliary domain and its Image: (a) general case; (b) spher-
ical layer with fluxes

In case (c), we make no additional steps and we consider the set Ak(ξ) constructed and
has just these four points. In case (b), we add to Ak(ξ) one point ξ2, which is an mirror
image of η0 with respect to γ2. Further, we add one more point η2 which is a mirror
image of ξ2 with respect to γ1. In case (a) we add to Ak(ξ) the points ξ2 and ξ3 that
are a mirror images of the points η0, η1 with respect to γ2. Then we also add to Ak(ξ)
the points η2 and η3 that mirror images of ξ2 and ξ3 with respect to γ1. Further, we
repeat the procedure (a)-(c) with respect to the points η2 and η3. Since h > 0, after a
finite number of steps we reach the case (c) that completes the construction of the set
Ak(ξ).

3.2. Alternating Algorithm. In this subsection we present an approximation of the
Green function for mixed boundary problem (12).Below we show that Green function
is a limit of sequence of Green functions of Dirichlet problem in an extended domain
with specific boundary condition. Let ξ be a point of singularity of the Green function
defined in (12) and let Ak(ξ) be the finite set constructed in Subsection 3.1.

For any ν ∈ Ak(ξ) define the Green function F (x, ν) with zero boundary condition
on the extended domain Ω̃ and with singularity at ν, namely:

(13) ∆ F (x, ν) = 0 in Ω̃ \ ν, and F (x, ν) = 0 on ∂Ω̃.
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It is a well known fact, that F (x, ν) can be presented as sums of the fundamental
solution of the Laplace equation 1

|x−ν| plus a regular part denoted by Φ(x, ν), i.e.

(14) F (x, ν) =
1

|x− ν| + Φ(x, ν).

In case of standard domain such as cylinder, cube or ball, this function has explicit
analytical presentation [7]. Next, we take the superposition of the functions F (x, ν) in
the following form:

G0(x,Ak(ξ)) =
∑

ν∈Ak(ξ)

F (x, ν).

It is obvious from the construction that

(15) ∆ G0(x,Ak(ξ)) = 0 in Ω̃ \Ak(ξ), and G0(x,Ak(ξ)) = 0 on ∂Ω̃.

Therefore, this is a Green function of the Dirichlet boundary value problem in Ω̃ with
singularities in the set Ak(ξ). Also, by the construction of the set Ak(ξ), the Green
function G0(x,Ak(ξ)) is even with respect to γ1 and therefore it satisfies a homoge-
neous Neumann boundary condition on γ1. Thus, we have the following situation: the
restriction of the function G0(x,Ak(ξ)) to the domain Ω is a solution of the Laplace
equation with a singularity at the point ξ; moreover, it satisfies homogeneous Neumann
condition on γ1 and zero Dirichlet boundary condition on Γ1. Therefore, G(x, ξ) and
G0(x,Ak(ξ)) differ only by the condition on γ2. Thus, we consider G0(x,Ak(ξ)) as an
approximation to G(x, ξ). Our further steps will be to correct G0(x,Ak(ξ)) so that the
correction matches this boundary condition. This correction is given in the following
algorithm:

An Alternating Algorithm:
(1) Take the trace of the function G0(x,Ak(ξ)) on S−1 and denote it by φ(x).
(2) In the domain B+ find a solution of the problem:

(16)
∆ g0(x) = 0 in B+

g0(x) = 0 on S−1
g0(x) = φ(x′(x)) on S+

1 ,

where x′(x) is a point of S−1 that is symmetric to the point x on S+
1 with respect

to γ2 (see, Fig. 4).
(3) In the extended domain Ω̃ find solution to the problem:

(17)

∆ G1(x) = 0 in Ω̃
G1(x) = 0 on Γ1 ∪ S+

2

G1(x) = g0(x) on S+
1

G1(x) = g0(x′(x)) on S−2 ,

where x′(x) is a point on S+
2 symmetric to the point x on S−2 with respect to

γ1 .
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Figure 4. Location of the images of the boundary points

Next, we repeat these two steps by replacing G0(x) by G1(x) and producing the next
pair of functions g1(x) and G2(x). Continuing this process, we obtain a sequence of
functions g0(x), g1(x), ..., gn(x), ... defined in the sub domain B+ of the extended domain
Ω̃. Also we have obtained the sequence of functions G1(x), G2(x), ... that are even in Ω̃
with respect to γ1. Further denote:

g̃N (x, ξ) = G0(x,Ak(ξ)) + g0(x) +
N∑

n=1

[gn(x) + (Gn(x)− gn−1(x))],

and

G̃N (x, ξ) = G0(x,Ak(ξ)) +
N∑

n=1

Gn(x).

The construction guarantees that these functions satisfy the following conditions:

(18)
∆g̃N (x, ξ) = 0 in B+ \ ξ

g̃N (x, ξ) = G̃N (x, ξ) on S−1
g̃N (x, ξ) = G̃N (x′(x), ξ) on S+

1 ,

where x′(x) is a point on S+
1 that is symmetric to x on the S+

1 with respect to γ2;

(19)

∆G̃N (x, ξ) = 0 in Ω̃
G̃N (x, ξ) = 0 on Γ1 ∪ S+

2

G̃N (x, ξ) = g̃N (x, ξ) on S+
1

G̃N (x, ξ) = g̃N (x′(x), ξ) on S−2 ,
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where x′(x) is a point on S−2 that is symmetric to the point x on S+
1 with respect

to γ1. In the domain B+ the functions g̃N (x, ξ) are even with respect to γ2. Similarly,
in Ω̃ the functions G̃N (x, ξ) are even with respect to γ1. Therefore, the following two
conditions are satisfied:

(20) (g̃N (x, ξ))x3 = 0 on γ2,

(21) (G̃N (x, ξ))x3 = 0 on γ1.

In addition we have:

(22) | G̃N+1(x, ξ)− G̃N (x, ξ) |=| g̃N+1(x, ξ)− g̃N (x, ξ) | on S+
1 ,

(23) | g̃N+1(x, ξ))− (̃gN (x, ξ) |=| G̃N (x, ξ)− G̃N−1(x, ξ) | on S+
1 .

Define:
Mm(g) = max

S+
1

| gm+1(x)− gm(x) |,

Mm(G) = max
S−2

| Gm+1(x)−Gm(x) |,

νm(x) =
Gm+1(x)−Gm(x)

Mm(g)
.

By construction νm(x) satisfies:

∆νm(x) = 0, νm(x) = 0 on Γ1 ∪ S+
2 and νm(x) ≤ 1 on S+

1 ∪ S−2 .

By the assumption S−1 and ∂Ω̃ intersect at non zero angle so we can apply the lemma
(see, e.g. [9] Chapter 4.4 ), to function νm(x). This lemma implies that

(24) | νm(x) |≤ q < 1 on S−1 .

At the same time on S−1 , by construction :

νm(x) =
gm+1(x)− gm(x)

Mm(g)
.

Combined with (24), this implies that:

Mm+1(g) ≤ qMm(g).

Further, we construct Mm(G) in a similar way. As a result, we obtain sequences
{Mm(g)} and {Mm(G)} that converge to zero at a rate of geometric progression with
ratio q. Hence, there exist the limits:

lim
m→∞ g̃m(x, ξ) = g̃(x, ξ) in B+, and lim

m→∞ G̃m(x, ξ) = G̃(x, ξ) in Ω̃.

On γ1 the functions G̃N (x, ξ) satisfy the condition (G̃N (x, ξ))x3 = 0 for any N (by
the symmetry property (21)). Therefore, their limit G̃(x, ξ) satisfies homogeneous
Neumann condition on γ1. On γ2, by the construction, g̃N (x, ξ) has the same property,
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i.e. (g̃N (x, ξ))x3 = 0. Also, by construction, G̃N (x, ξ)− g̃N (x, ξ) = 0 on S+
1 and on S−1

the difference

G̃N (x, ξ)− g̃N−1(x, ξ) = G̃N (x, ξ)− G̃N (x, ξ)

approaches zero. Then limits G̃(x, ξ) and g̃(x, ξ) are equal in B+, so that by (20)
(G̃(x, ξ))x3 = 0 on γ2 as well. QED.

Remark:
All construction which is done for Laplace equation could generalized on elliptic

operator of second order in divergence form with bounded and measurable coefficients.
This type of equation model fluid filtration in highly heterogeneous anisotropic porous
media, namely when tensor of permeability K = {ki,j} is a s.p.d. matrix. For applying
this technique the coefficients of the matrix K should be extended as k̃i,j evenly on
the domain Ω̃ in such way that following conditions are satisfied: k̃i,j = ki,j in Ω, k̃i,j−
is an even function with respect γ2 in B+, and k̃i,j− is an even function with respect
γ1 in Ω̃. All construction for Green function of mixed boundary problem 12 for general
selfadjoint elliptic operator in second order in the extended domain are justified as well
for Laplace equation. Differences concern only main estimation (24), that is based on
Lemma from Chapter 4.2 of [9]. Instead this Lemma we can for example apply more
general proposition for so called L-harmonic measure obtained in [12].

4. Numerical Implementation of the Method

In Subsection 2.3 we proposed an approximation method for solving the problem (6)
- (8). The essence of the method was to approximate the potential (9) by (10). In
the previous section we provided a method for computing the Green function G(x, ξ).
Our construction ensures that on the boundary ∂Ω the function G(x, ξ) satisfies the
conditions (8). The main task in this section is to provide an approximation to the
equation (11). This will lead to a linear system for the discrete densities βi. First,
we present an algorithm for computing an approximation to G(x, ξ). The ball B is
considered as a symmetric extension of the layer Ω. Therefore, the Green function
in (10) could be represented as a limit of the sequence {G̃N (x, ξ)}. Note, that for
obtaining functions G̃N (x, ξ) it is not required to solve the problems in the lens B+.
The G̃N (x, ξ) can be represented as a sum:

(25) G̃N (x, ξ) = G0(x,Ak(ξ)) +
N∑

n=1

Πn(, x, ξ).

So that by (14) G0(x, ξ) has the form

(26) G0(x, ξ) =
∑

ν∈Ak(ξ)

{ 1
| x− ν | + Φ(x, ν)},
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where Φ(x, ν) is the regular part of the Green function in the ball B (see, e.g. [7]). The
Πn in (25) is the Poisson operator

(27) Πn(x, ξ) = (4π)−1

∫

∂B

(R2− | x |2)φn(y)
R | x− y |3 dSy,

with

(28) φn(y) =





g̃n(y), on S+
1 ,

0, on Γ1 ∪ S+
2 ,

g̃n(y′) on S−2 .

Here, the functions g̃n(y) have been defined in the same way as in Section 3.2 for the
the domain Ω̃ = B; also point y′ in (28) is given by the construction in step 2 of the
alternating algorithm (see, Figure 4). The Poisson integral (27) could be calculated by
a Simpson-type cubature formulae [1]. Some practical computations performed in [13]
have shown that for R = 5000 m, h = 10 m a cubature with 4040 nodes guarantees
an accuracy 10−4 of the normal derivative of G̃N (x, ξ) on γ2 for N = 5 steps
(explained in Subsection Alternating Algorithm). The Simpson formula gives higher
accuracy but is quite expensive. In our calculation we have used a less accurate but
very efficient Lusternik formula [1] with 64 nodes. Further, in order to find the discrete
densities βi we need to compute integrals of the Green function over ∆i. This step is
implemented in following way: using presentation (25) of G̃N (x, ξ) and formulae (26)
for G0(x, Ak(ξ)) the integral over ∆i in (10) is presented in the form:

∫

∆i

G̃N (x, ξ) dξ =
∫

∆i



FN (x, ξ) +

∑

ν∈A(ξ)

[
1

| x− ν | + Φ(x, ν)]



 dξ,

where FN (x, ξ) =
∑N

n=1 Πn(x, ξ) is a regular function.
In our numerical implementation the last two integrals are calculated analytically

while the first one is computed numerically. Thus, the outer problem is solved numeri-
cally on any step of the iteration process described in Subsection 5.1. For this purpose
at any step the computed integrals can be substituted in the equation (11) as an ap-
proximation of the pressure function and the radial component of the velocity (4). The
numerical values of βi are obtained by Gauss method as a solution of linear N × N
system equation(11) derived for the collocation points. Results of the computations
for βi, i = 1, ..., 3000 in two cases are presented on Figure 5. In our computations
L = 2000 m, rw = 0.075 m, and rw = 0.05 m. The hydrodynamic meaning of the dis-
crete density distribution is a local influx towards the well surface. From this picture
how the conjugate flow in the reservoir/well system effects the distribution of local flux
along the well. Namely: when the radius of the well, rw, decreases, then the resistance
to the flow in the well increases. Therefore, the local influx takes its maximum near
x1 = 0, the dominated end of the well. At the same time, at the free end of the well,
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Figure 5. Local flux vs well radius (rw = 0.075m dotted line, rw =
0.05m continuous line)

x1 = L, the influx is reduced. Near the end points x = 0 and x = L we see certain
spikes in the behavior, called ”end effects”.

4.1. Computational Results and Discussion. As noted above, an interesting fact
is the dependence of the pressure drop and local production distribution along the well
on geometrical parameters of reservoir/well system.

It has been shown [2], that in an unbounded 3-D porous media with “normal perme-
ability”(less than 1D) and for flows obeying conditions 1-6 in section 2.1, the pressure
drop along the well-bore is insignificant. In a bounded reservoir the dependence on
geometrical parameters could lead to a significant pressure drop. Studying the impact
of geometrical characteristics of the reservoir boundary on the production rate and
pressure drop is the aim of this section. Here the variable parameters are: L - length
of the well, Db - distance between free end of the well and reservoir boundary, location
of the dominated end of the well, rw - well’s radius, shape of the reservoir boundary
namely 1/R - radius of the curve of the ball B(0, R) .

(1) First we study the influence of the shape factor of the reservoir. Our com-
putations show that the pressure drop along the well-bore depends essentially
on the form of the exterior boundary Γ1. The results for two limiting cases
(spherical and plane external boundaries) are given on Figure 6. Here < P >=

1
πr2L

∫
L Pa(x1)dx1 is the average pressure in the wellbore and Pw is the pres-

sure at the fixed (dominated) end. In both cases the distance between free
end and the external boundary remained the same. These results show, that
boundary shape could lead up to 10% increase of pressure drop.
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Figure 6. Distribution of < P > within a well in reservoir with plane
(1) and spherical (2) external boundary

(2) Next we analyzed the impact of the distance between well and reservoir exterior
boundary Γ1 on the pressure drop in the well. It is clear that if the free end
of the well intersects with the reservoir external boundary, the pressure drop is
equal to the difference between pressure on the dominated end and the value
of pressure on external boundary pressure. We studied the influence of the
Db on a value of the pressure at the free end. In our computational runs we
have assumed that well length L, reservoir’s radius Rb, well radius rw, and well
location x0

3 with respect to top and bottom are constant. So the parameter Db

decreases while shifting of the well towards Γ1 . The corresponding results are
presented on Figure 7. Here PL is the pressure at the free end of the well-
bore. As may be seen from Figure 7 this relation is not significant for small
Db (about 20rw). But when the free end of the well is close enough to the
external boundary the pressure at this end decreases exponentially. Note also
that the increase of well length, which does not decreases the distance Db , also
causes considerable pressure drop at the free end of the well. For this purpose
the following numerical experiment has been performed.

(3) Take the distance Db , well radius rw, and Rb are constant and vary parameter
was the L length of the well. The results of numerical experiments showed
that the influence of the dominated end of the well on the free end of the well
could decrease even proportionally to the well length.
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Figure 7. Ratio of PL to Pw vs distance to exterior boundary

(4) It is known from field data [10] , [20] that as a result of pressure drop along the
well the dependence of production rate on the well length tends to be constant.
So, the correlation between the production rate of the horizontal well has been
studied for two cases: (a) constant pressure in the well, and (b) variable pressure
in the well generated by reservoir/well flux.

We have assumed that the length L, the well location x0
3 (with respect to

top and bottom), and radius rw remain constant. The variable parameter is
Db . As shown on Figure 8, in case of constant pressure the production rate
sharply decreased and stabilized as the distance from the reservoir boundary
increased. In case of variable pressure in the hole, the curve is much smoother.

(5) As noted above the shape of the reservoir could result in substantial changes
of the pressure drop. In the model considered a quantitative characteristics
of the shape of the reservoir boundary is the curvature radius Re = 1

Rb
.

Using our model the influence of the Re on the well’s production rate has
been evaluated. A series of computations with constant length L, radius of
the well rw, and distance Db has been computed. The variable parameter
was Re. The corresponding results is illustrated on Figure 9. According to
these computations there exist such a critical value R0

e , depending on L
and Db such, that if Re is larger than this critical value R0

e then the
production rate would no longer depend on Re. All these results were obtained
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Figure 8. Production rate vs. distance to the exterior boundary

Figure 9. Production rate vs. reservoir curvature

for abnormally high permeability values (k = 10D),very short distances (10 m)
to the external reservoir boundary and big enough radius of the well (0.1 m).
We wanted to show that the proposed method could be used to estimate the
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Figure 10. Pressure drop along the well-bore vs bore-hole radius

effects of the geometry on the production rate and the pressure distribution
along the well-bore. When the distance to the external boundary and the
reservoir permeability were chosen more realistic, the picture is similar but the
pressure drop is significantly smaller. Thus, we came to the same conclusion as
in [2] , that within the considered assumption there are no limitations on the
length of horizontal well imposed by its hydrodynamics effectiveness. At the
same time it is well known that the hydrodynamic resistance of a pipe strongly
depends on its radius.

(6) Further the impact of the well bore radius on the pressure drop along the well
has been studded. The results of the computations of cases that satisfy the
assumption (1) - (8) in subsection 2.1 are presented on Figure 10. In these
computations we varied the well radius rw, and fixed Rb = 10000 m, k =
100 MD, Db = 100 m, and L = 1000 m. As shown on Figure 10, the pressure
drop in a well of very small radius may reach tens of percents.

High-pressure drops in a long horizontal well may thus be accounted for by
various technological reasons (such as well’s completion, casing/tubing diame-
ters, sand factor, screen permeability etc.) resulting in a decrease of the actual
diameter of bore-hole. Therefore, it is important to study the impact of the
radius of the well on the flow along the well. The distribution of local influx
along the well for two cases are presented on the Figure 11. These results show
that well radius could substantially reduce the local influx towards the well. In
these computations L = 2000 m. The number of discretizations along the well
is equal 3000.
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Figure 11. Local flux towards well (rw = 0.025m- continuous line,
rw = 0.1m-dotted line)

In the next section another model and method that can take into account the impact
of wells of finite conductivity on the pressure drop are presented.

5. Coupled Porous Media Model

In this section the well is modeled as a super-collector, that is porous media with
extremely high permeability. We assume that the well and the reservoir are cylinders
and the flows are coupled through their interface. The corresponding mathematical
problems are solved by the method of separation variables and the solutions are repre-
sented in the form of Fourier-Bessel series [7]. In order to describe our model we need
some notations. The well and the reservoir are represented by the domains W and Ω,
correspondingly:

W ≡ A0 ∪A1, where

A0 ≡ {x : x2
2 + x2

3 < r2
0; 0 < x1 < L}; A1 ≡ {x : r2

0 < x2
2 + x2

3 < r2
w; 0 < x1 < L},

and
Ω ≡ A2 + A3, where

A2 ≡ {x : r2
w < x2

2 + x2
3 < R2

b ; 0 < x3 < H; 0 < x1 < L};
A3 ≡ {x : x2

2 + x2
3 < r2

w; 0 < x3 < H, L < x1 < H}.
Here x = (x1, x2, x3) are the Cartesian coordinates of the points x in the reservoir. One
of the possible ways to couple the flows in the regions W and Ω, A0, A1, A2, A3 is
the following:

(1) A0 is the well’s tubing or more general - oil or gas transport domain, where flow
is subjected to the approximation of pipe hydrodynamics;
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(2) A1 is the well’s annuli (screen between tubing and casing) or more general - “su-
per collector”, a bottom hole zone with small diameter with high permeability
k1, where flow satisfies Darcy low;

(3) A2 + A3 represents the reservoir itself (bounded by the top (y = H) and the
bottom (y = h)) with permeability k2.

This domain contains two boundaries of discontinuity of the media:
• ∂A0, the boundary between tubing and bottom hole zone of porous media,

where the conjugate condition (6) is satisfied.
• ∂A1, the boundary between “super collector” and porous media of the reservoir.

Thus we consider the model:
(1) The average pressure Pa(x1) satisfies equations (3) in A0 , the coupling bound-

ary conditions (6) on the well surface x2
2 + x2

3 = rw and the condition (5) on
the free end of the well x1 = L;

(2) The pressure p(x) satisfies the Laplace equation in A1, A2 and A3 ;
(3) On the interfaces between domains A1, A2 and A3 the pressure and the normal

component of the velocity are continuous.
Analytical solution of this general problem could be developed by using iterative

techniques. First, one can apply the developed technique in the Section 2 for spherical
layer Ω to cylindrical domain and show the following:

Let Ω̃ is a cylindrical extension of the domain Ω. There exists a pressure distribu-
tion on the external boundary of the extended domain Ω̃, such that the solution of
the problem in a cylinder annuli Ω̃ with this boundary condition will satisfy non-flow
conditions on the top and the bottom.

Thus, one can reduce the problem to the following two step procedure:
(1) First step: Split the cylinder Ω̃ into four homogeneous media, i.e. Ω̃ = Ã2 ∪

A1 ∪A0 ∪A3, where

Ã2 ≡ {x : r2
w < x2

2 + x2
3 < R2

b ; 0 < x1 < L}.
(2) Second step: Solve the two problems in the cylinder A = A0∪A1∪Ã2 and A3,

correspondingly by a non-overlapping domain decomposition algorithm [6, 29].
(3) Third step: Reduce the problem in A to a sequence of problem in A0 and

B = A1 + Ã2. This sequence is linked through conjugate condition (6) and
converges as a geometrical progression.

Finally, the overall problem is reduced to the problem of flow with mixed boundary
conditions in heterogeneous porous media in an annulus cylinder B with permeability

(29) K =

{
k1 in A1,

k2 in Ã2.

Detailed description of the proposed methods is beyond the scope of the present paper.
Here we will cover part of the algorithm that gives the analytical solution of the mixed
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Figure 12. Schematic representation of a cylindrical reservoir

boundary problem in highly heterogeneous porous media B = A1 + Ã2. The algorithm
is realized in the form of a Fourier-Bessel series. It makes possible to investigate explic-
itly the dependence of the pressure drop on the well radius (casing/tubing diameter)
and well/reservoir conductivity ratio.

5.1. Splitting of the Problem. We introduce new variables:

x = x1/rw, y = x2/rw, z = x3/rw, r2 = x2 + y2; z = z

Then the main dimensionless geometrical parameters are:

L = l/rw, R0 = r0/rw, R = Rb/rw

. Domains B, A1 and Ã2 are transformed into:

B = {(r; z) : R0 < r < R; 0 < z < L}
A1 = {(r; z) : R0 < r < 1; 0 < z < L} and A2 = {(r; z) : 1 < r < R; 0 < z < L}.

Define the edge’s and side’s parts of the cylindrical domains A1, A2 as follows (see
Figure 12):

a1 = {R0 < r < 1, z = 0}; b1 = {R0 < r < 1, z = L}; c1 = {r = R0, 0 < z < L},
a2 = {1 < r < R, z = 0}; b2 = {1 < r < R, z = L}; c2 = {r = R, 0 < z < L}.

Denote the interface between A1 and A2 as d = {r = 1; 0 < z < L}. Further, we make
the following assumptions:

(1) the flow in B obeys the Darcy low with discontinuous permeability (29);
(2) the pressure p and radial component of the velocity are continuous at the in-

terface d between A1 and A2;
(3) the pressure is given on the boundary a1 and equals to pw;
(4) a non-flow condition is specified on a2;
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(5) the reservoir pressure PR on the right end, and on the external boundary
b1, b2, and c2 of the cylinder is given;

(6) pressure is a linear function of z along the boundary c1; that corresponds to
Poisel flow in the tubing of the well.

Thus, for the reduced pressure function

(30) p̄ = (p− PR)/(Pw − PR) =

{
p1 in A,

1

p2 in A2.

we obtain the following mixed boundary-value problem:

(31)

∆p1 = 0 in A1

p1 = 1 on a1

p1 = 1− z/L on c1

p1 = 0 on b1,

(32)

∆p2 = 0 in A2

(p2)z = 0 on a2

p2 = 0 on c2

p2 = 0 on b2.

The coupling conditions on the interface d between the media A1 and A2 are:

(33) p1 |r=1−0= p2 |r=1+0,

(34) k1
∂p1

∂r
|r=1−0 = k2

∂p2

∂r
|r=1+0.

The method, the algorithm, and the main results, presented bellow, remain the
same for any type of Dirichlet or Neumann conditions on the external boundary of the
annular cylinder B , namely, on a1, a2, b1, b2, c2 .

5.2. Alternating Algorithm Without Overlapping. In this subsection a modi-
fication of Shwarz Dirichlet-Neumann [29] alternating algorithm without overlapping
is presented. If the ratio G = k2/k1 is very small then the pressure in the reservoir
(domain A) is close to discontinuous function that is linear in A1 and equals to zero in
A2. When G increases then the pressure might be adjusted both in A1 and A2 so it
becomes smoother. Moreover, it is obvious that an increase of G decreases the pressure
in A1 and increases the pressure A2. Under the assumption that G = k2/k1 < 1 those
Schwarz alternating method is implemented as an iterative procedure:

(1) At each step solve two problems: (a) (32) in the domain A2 with homogeneous
Dirichlet condition on the interface d; and (b) (31) in the domain A1 with
homogeneous Neumann conditions on the same side.

(2) Extend this solutions through the interface between A1 and A2 in such way
that . the extension is subject to the coupling conditions (33),(34);

(3) Correct this extension on non-joint parts of a boundary.



94 RICHARD EWING, AKIF IBRAGIMOV, RAYCHO LAZAROV

A distinctive feature of this process is the correction of the solution only on non-joint
part of boundary: a1, a2, b1, b2, c1, c2, because on the interface d between A1 and
A2 the pressure and the normal flux satisfy the coupling conditions on each step by
construction.

From a mathematical point of view this iterative procedure makes possible to rep-
resent the solution of the problem (31), as an finite sum of three types of functions:
Ui(r, z), Wi(r, z) and Vi(r, z) (i = 1.2, ...), where U0(r, z) = (L − z)/L, W0(r, z) and
V0(r, z) are equal zero, and for i = 1, 2, ... the functions Ui(r, z), Wi(r, z) and Vi(r, z)
are solutions to the following problems:

(1) Function Ui(r, z) is a solution of the problem

(35)

∆ Ui(r, z) = 0 in A1 ∪A2

Ui(R0, z) = Ui(r, L) = 0

∂Ui(1, z)
∂r

= 0

Ui(r, 0) = −Vi(r, 0)−Wi(r, 0), when R0 < r < 1.

(2) Function Vi(r, z) is a solution of:

(36)

∆ Vi(r, z) = 0 in A1 ∪A2

Vi(1, z) = Vi(R, z) = 0

Vi(r, L) = 0

(Vi(r, 0))z = −(Ui−1(r, 0))z.

Moreover, function Vi(r, z) have to satisfies the coupling conditions (33),(34).
Then each function

(37) VN =
N∑

i=1

(Ui + Vi)

for N ≥ 1 satisfies all boundary conditions except the condition on c1 and c2. Then,
we introduce the following correction:

(3) Function Wi(r, z) is a solution of the problem

(38)

∆ Wi(r, z) = 0

Wi(R, z) = −Ui−1(R, z)

Wi(r, L) = (Wi(r, 0))z = 0

Wi(1− 0, z) = Wi(1 + 0, z)

k1(Wi(1− 0, z))r = k2(Wi(1 + 0, z))r

Wi(R0, z) = −Vi(R0) on c1.

In subsection 5.3 it will be shown that the functions Ui(r, z), Wi(r, z) and Vi(r, z)
exist and can be represented in the form of Fourier and Fourier-Bessel series. Moreover,
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we find a condition on the parameters G and R/R0, (but not on the length L !), so
that Vi(r, z) tends to zero with rate of geometric progression with a ratio q < 1.

Then by construction the function

(39) uN = U0 + VN +
N∑

i=1

Wi

is a solution of Laplace equation in A1 and A2 and satisfies all boundary conditions of
the problems (31) -(32), except the conditions on c1 and c2. Function uN is equal to
(L − z)/L + VN (R0, z) on c1 and 1 + VN (r, 0) on a1 and in addition VN (r, z) tends to
zero when N tends to ∞. Thus, uN tends to the solution of the problem (31)-(34).

The formula (39) contains the main pressure function U0 that generates flow in the
pipe (solution of the problem (3)-(5)) and the sum of terms generated by perturbations
of the reservoir’s influx. These “influx” terms dominate in case when the parameter G
is near one and are negligible when G is small.

5.3. Implementation of Non-overlapping Algorithm. The first approximation U0

is a linear function: U0 = (L−z)/L and it satisfies all conditions except two boundary
conditions:

on a2 = {z = 0, 1 < r < R} and on c2 = {r = R, 0 < z < L}.
To correct the function U0 on a2 and c2 we solve the the problem (36). The solution of
this problem is sought in form of Fourier-Bessel series [7]: Vi = Φi(r, z) in A2, and Vi =
GΦi(r, z) in A1. Here

(40) Φi(r, z) =
∞∑

m=1

Rm(r)Dm(i)
sinh(νmz)

νm cosh(numL)
,

(41) Rm(r) = J0(νmr)Y0(νm)− J0(νm)Y0(νmr),

where νm are the roots of the equation Rm(R) = 0,m = 1, ....
The Dm(1) in (40) is a Fourier-Bessel coefficient of the function −1/L. The function

U0 + V1 satisfies all conditions (32-34) except the conditions on a1, c1 , and c2. To
correct it we need to solve the the problems (35) and (38) with corresponding boundary
conditions on a1 and c1. The solutions Ui can be represented in the form:

(42) Ui(r, z) =
∞∑

k=1

Ck(i)Ek(r)
sinh(µkz)
sinh(µkL)

.

Here Ek(r) = J0(µkr)Y0(µkR0) − J0(µkR0)Y0(µkr) and µk, k = 1, ... are the roots of
the equation Ek(1) = 0; Ck(i) are Fourier-Bessel coefficients of the function GΦi(r, L).
The maximum principle gives the following inequality:

(43) Ck(i) ≤ C∗
k(i), where C∗

k(i + 1) = −GC∗
k(i)

∞∑

m=1

gmQm,
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with

Qm =
2

1−R0

∫ 1

R0

rRm(r)dr and gm =
πJ0(νmR

J0(νm) + J0(νmR)
.

Assume that G, R and R0 are such that

(44) G
∞∑

1

Qmgm ≤ q < 1.

Then from the recurrence relation (43) it follows that Ck(i) ≤ qi. Finally, we have
to make the last correction concerning the conditions on the sides c1 and c2 of annuli
cylinder. For this purpose we have already introduced the problem (38). The solution
of this problem has the form:

Wi(r, z) =
∑∞

n=1 R1
n(r, z) cos(Bnz) in A1

Wi(r, z) =
∑∞

n=1 R2
n(r, z) cos(Bnz) in A2

R1
n = a1

nI0(Bnr) + a2
nK0(Bnr)

R2
n = b1

nI0(Bnr) + b2
nK0(Bnr)

a1
nI0(Bn) + a2

nK0(Bn) = b1
nI0(Bn) + b2

nK0(Bn)

a1
nI1(Bn)− a2

nK1(Bn) = G(b1
nI1(Bn)− b2

nK1(Bn))

a2
nK0(BnR0) = f1

n − a1
nI0(Bn)

b1
nI0(BnR) = f2

n − b2
nK0(BnR).

Here Bn = π(2n+1)
2L , f1

n is the Fourier coefficient of Vi(R0, z), and f2
n is the Fourier

coefficient of Ui−1(R, z). Then the function

uN =
N∑

i=1

Ui(r, z) +
N∑

i=1

Vi(r, z) +
N∑

i=1

Wi(r, z)

satisfies all conditions except the conditions on z = L, 1 < r < R, where UN (r, L)
tends to zero because of condition (44) Q.E.D.

Conclusions:
(1) The ratio reservoir/well conductivity has a greater impact on the pressure drop

as compared to other parameters of the system ”reservoir + horizontal well”.
Second in significance parameter influencing the pressure drop is the radius of
the well.

(2) The ratio reservoir/well conductivity is defined by the completion of the well
(tubing radius, actual ”screen + sand pack” conductivity etc.) and actual radius
of oil/gas flow along the tubing.

(3) The geometrical parameters of the reservoir significantly affected on the pro-
ductivity index of horizontal well when the ratio of reservoir/well conductivity
is very small (G = k2

k1
<< 1), then the productivity index is by . From our
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results it can be deducted in the case G << 1 that: the distance from the ex-
ternal boundary on the first place, the shape factor (curvature of the reservoir
boundary) on the second place, and length of the well in third place affect the
pressure drop along the well.

(4) The pressure drop along the well-bore, the productivity of the horizontal well,
beginning at certain critical value ceases to grow with increase of its length.
The proposed computational methods can be used to predict accurately this
critical length and its dependence on ratio reservoir/well conductivity.

List of used notations

µ − viscosity
K − permeability
p − pressure in the reservoir
rw − radius of the well
L − length of the well
Pa − average pressure in the well − bore
Pw − pressure in the fixed (dominated) end of the well
PL − pressure on the free boundary of the well
PR − reservoir pressure
Db − distance between free boundary of the well and reservoir boundary
R − radius of external boundary
h − reservoir thickness

Re = 1/R − curvature radius of external boundary (shape factor)
B(0, R) − sphere of radius R

r0 − casing radius
r2 − x2 + y2

J0(Y0) − Bessel function of zero order of first (second) kind
I0(K0) − Modified Bessel functions of zero order of first (second) kind
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