• 제목/요약/키워드: Hybrid coating

검색결과 314건 처리시간 0.036초

코팅된 요철표면을 가지는 탄소/에폭시 복합재료의 마찰 및 마모 특성 (Tribological behaviors of polymer coated carbon composite with small surface grooves)

  • 김성수;이학구;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.107-110
    • /
    • 2005
  • Tribological behaviors of carbon epoxy composites whose surfaces have many small grooves were compared with respect to coating method under dry sliding and water lubricating conditions. The surface coating materials were epoxy (Ep) and polyethylene (PE) mixed with self-lubricating $MoS_2$ and PTFE powders. The wear morphology of the composites observed with a scanning electron microscopic (SEM) revealed that the surface coating layer mixed with the self-lubricating powder on the grooved surface significantly improved the wear resistance under water lubricating condition because the surface coating layer blocked water to penetrate the composite surface and the self-lubricating powder reduced the wear on the coating by suppressing the generation of blisters.

  • PDF

동결융해 및 UV 폭로시험을 거친 FRP Hybrid Bar의 인발거동특성 평가 (Evaluation of Bond Strength in FRP Hybrid Bar Affected by Freezing/thawing Test and UV Rays)

  • 박재성;윤용식;박기태;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제5권1호
    • /
    • pp.53-58
    • /
    • 2017
  • FRP Hybrid Bar는 내부에 강재를 유리섬유와 에폭시 수지가 코팅된 형태로 사용되는데, 인장경화 성능이 있으며, 경량이므로 효과적인 보강재료로 사용될 수 있다. 자외선 및 동결융해에 노출된 에폭시는 표면 열화가 발생하기 쉬우며, 이는 매립된 철근 및 표면의 콘크리트와의 부착력 저하를 야기할 수 있다. 본 연구에서는 일반철근, FRP Hybrid Bar 및 자외선(UV) 폭로시험을 거친 FRP Hybrid Bar의 외관특성분석을 실시하였다. 또한 각 보강재를 사용하여 콘크리트 인발 공시체를 제조하였으며, 동결융해시험을 실시해 Cycle에 따른 부착성능을 분석하였다. FRP Hybrid Bar는 UV 폭로시험 후에도 표면 산화(Chalking)와 같은 에폭시계 재료의 열화가 나타나지 않았다. 동결융해시험은 120Cycle 및 180Cycle까지 진행하였는데, UV 폭로시험 후 FRP Hybrid Bar를 사용한 공시체는 $241{\pm}kN$ 부착력을 가지고 있었다. 이는 일반철근 대비 약 106.3%수준으로 개선된 부착강도인데, FRP Hybrid Bar 표면의 규사코팅에 따라 부착면적이 증가했기 때문이다. 3가지 조건(일반철근, FRP Hybrid Bar, UV 폭로시험 후의 FRP Hybrid Bar)에 대하여, 동결융해 Cycle이 증가함에 따라 부착력이 크게 감소하지는 않았으나, 코팅된 규사의 박락으로 인해 UV 시험 이후의 동결융해를 거친 조건에서는 실험 편차가 상대적으로 증가하였다.

Comparison on Mechanical Properties of SSBR Composites Reinforced by Modified Carbon black, Silica, and Starch

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • 제53권3호
    • /
    • pp.175-180
    • /
    • 2018
  • Solution-styrene-butadiene rubber (SSBR) composites were manufactured using four kinds of fillers: silica-silane coated carbon black (SC-CB) hybrid, starch-SC-CB hybrid, pure silica, and pure starch. The influence of filler type on the mechanical properties of the rubber matrix was studied in this work. SC-CB was prepared by silane-graft-coating using vinyl triethoxy silane and carbon black, which enhanced the dispersion effect between the rubber matrix and the filler, and improved the mechanical properties of the compounds. The morphology of the composites was observed by field-emission scanning electron microscopy (FE-SEM). The thermal decomposition behavior of the composites was determined by thermogravimetric analysis (TGA), and the crosslinking behavior of the composites was tested using a rubber process analyzer (RPA). The hardness, tensile strength, swelling ratio, and gas transmittance rate of the composites were evaluated according to ASTM. The test results revealed that with the addition of SC-CB, the hybrid fillers, especially those blended with silica, showed a better reinforcement effect, the highest hardness and tensile strength, and stable thermal decomposition behavior. This implies that the silica-SC-CB hybrid filler has a notable mechanical reinforcement effect on the SSBR matrix. Because of self-crosslinking during its synthesis, the starch-SC-CB hybrid filler produced the most dense matrix, which improved the anti-gas transmittance property. The composites with the hybrid fillers had better anti-swelling properties as compared to the neat SSBR composite, which was due to the hydrophilicity of silica and starch.

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • 제1권3호
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

초음파 스프레이 코팅과 레이저 소결 공정에 의해 유연 기판 표면에 형성된 탄소나노튜브-구리 하이브리드 박막 (Carbon Nanotube-Copper Hybrid Thin Film on Flexible Substrate fabricated by Ultrasonic Spray Coating and Laser Sintering Process)

  • 박채원;권진형;엄현진
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.135-135
    • /
    • 2016
  • Recently flexible electrode materials have attracted attention in various electrical devices. In general, copper(Cu) is widely used electrical conductive material. However, Cu film showed drastically reduction of electrical conductivities under an applied tensile strain of 10%. These poor mechanical characteristics of Cu have difficulty applying in flexible electronic applications. In this study, mechanical flexibilities of Cu thin film were improved by hybridization with carbon nanotubes(CNTs) and laser sintering. First, thin carbon nanotube films were fabricated on a flexible polyethylene terephthalate(PET) substrate by using ultrasonic spray coating of CNT dispersed solution. After then, physically connected CNT-Cu NPs films were formed by utilizing ultrasonic spray coating of Cu nanoparticles dispersed solution on prepared CNT thin films. Finally, CNT-Cu thin films were firmly connected by laser sintering. Therefore, electrical stabilities under mechanical stress of CNT-Cu hybrid thin films were compared with Cu thin films fabricated under same conditions to confirm improvement of mechanical flexibilities by hybridization of CNT and Cu NPs.

  • PDF

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

WC/C 다층박막의 합성 및 기계적 특성에 관한 연구 (A study on the synthesis and mechanical properties of WC/C multilayered films)

  • 명현식;한전건
    • 한국표면공학회지
    • /
    • 제35권3호
    • /
    • pp.121-126
    • /
    • 2002
  • WC/C multilayered films were deposited by arc ion plating and magnetron sputter hybrid system with various $C_2$H$_2$ flow rates and bias voltages. The coatings have been characterized with respect to their chemical composition (Glow Discharge Optical Emission Spectroscopy), hardness(Knoop micro-hardness), residual stress(Laser beam bending) and friction coefficient(Ball on disc type wear test). Deposition rate, microhardness and residual stress of WC/C films were observed to increase with increasing the $C_2$$H_2$ flow rates. The highest hardness and residual stress were measured to be 26.5 GPa and 1.1GPa for, WC/C film deposited at substrate bias of -100V. WC/C multilayered film was obtained very low friction coefficient(~0.1).

제작조건에 따른 졸-겔 복합 실리카 박막의 광학적 성질 변화 (The influence of preparation condition on optical property of sol-gel derived hybrid organic-inorganic silica glass thin films)

  • 정재완
    • 한국광학회지
    • /
    • 제11권4호
    • /
    • pp.255-260
    • /
    • 2000
  • 유기 금속화합물을 출발물질로 이용하는 졸-겔 방법으로 균열이 없는 유기-무기 복합 실리카 박막을 제작하였으며, 코팅방법, 조성비, prebake, postbake 온도 등의 제작조건에 따른 박막의 두께 및 굴절률의 변화를 체계적으로 조사하여 재현성 있는 제작조건을 확립하였다. 특히 광개시제를 첨가하였을 때 자외선 노광량에 따른 광학적 성질변화를 세 가지 광개시제에 대하여 측정, 비교하였다. 또한 졸-겔 박막으로 다중모드 간섭을 이용한 광 파워 분배기를 제작하여 광소자로의 응용 가능성을 살펴보았다.

  • PDF

UV경화형 아크릴 수지와 콜로이드 실리카로 합성된 코팅막의 특성 (Properties of Coating Films Synthesized from Colloidal Silica and UV-curable Acrylate resin)

  • 강영택;강동필;한동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.551-552
    • /
    • 2007
  • Coating films were prepared from silane-terminated Colloidal silaca(CS) and UV-curable acrylate resin. The silane-terminated CSs were synthesized from CS and methyltrimethoxysilane(MTMS) and then treated with 3-methacryloxypropyltrimethoxysilane(MAPTMS)/3-glycidoxypropyltrimethoxysilane( GPTMS)/vinyltrimethoxysilane(VTMS) by sol-gel process, respectively. The silane-terminated CS and acrylate resin were hybridized using UV-curing system. Thin films of hybrid material were prepared using spin coater on the glass. Their hardness, contact angle and transmittance improved with the addition of silane-terminated CS.

  • PDF