DOI QR코드

DOI QR Code

Evaluation of Bond Strength in FRP Hybrid Bar Affected by Freezing/thawing Test and UV Rays

동결융해 및 UV 폭로시험을 거친 FRP Hybrid Bar의 인발거동특성 평가

  • Park, Jae-Sung (Department of Civil Engineering, Hannam University) ;
  • Yoon, Yong-Sik (Department of Civil Engineering, Hannam University) ;
  • Park, Ki-Tae (Korea Institute of Civil engineering and building Technology) ;
  • Kwon, Sung-Jun (Department of Civil Engineering, Hannam University)
  • 박재성 (한남대학교 건설시스템공학과) ;
  • 윤용식 (한남대학교 건설시스템공학과) ;
  • 박기태 (한국건설기술연구원 구조융합연구소) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2017.02.27
  • Accepted : 2017.03.16
  • Published : 2017.03.30

Abstract

FRP Hybrid Bar, composed of an embedded steel and the coated composites with epoxy and glass fiber, is an effective construction material with tension-hardening performance and lightweight. The epoxy exposed to UV(Ultra Violet Rays) and FT(Freezing and Thawing) action easily shows a surface deterioration, which can cause degradation of bonding strength between inside-steel and outside-concrete. In the present work, surface inspection for 3 different samples of normal steel, FRP Hybrid Bar before UV, and FRP Hybrid Bar after UV test was performed, then concrete samples with 3 reinforcement types were prepared for accelerated FT test. Through visual inspection on 3 typed reinforcement, no significant deterioration like chalking was evaluated. The results from FT test to 120 and 180 cycles showed FRP Hybrid Bar exposed to UV test has higher bonding strength than normal steel by 106.3% due to enlarged bond area by silica coating. The 3 cases showed a similar bond strength tendency with increasing FT cycles, however a relatively big deviations of bond strength were evaluated in FRP Hybrid Bar after UV test due to loss of silica coating.

FRP Hybrid Bar는 내부에 강재를 유리섬유와 에폭시 수지가 코팅된 형태로 사용되는데, 인장경화 성능이 있으며, 경량이므로 효과적인 보강재료로 사용될 수 있다. 자외선 및 동결융해에 노출된 에폭시는 표면 열화가 발생하기 쉬우며, 이는 매립된 철근 및 표면의 콘크리트와의 부착력 저하를 야기할 수 있다. 본 연구에서는 일반철근, FRP Hybrid Bar 및 자외선(UV) 폭로시험을 거친 FRP Hybrid Bar의 외관특성분석을 실시하였다. 또한 각 보강재를 사용하여 콘크리트 인발 공시체를 제조하였으며, 동결융해시험을 실시해 Cycle에 따른 부착성능을 분석하였다. FRP Hybrid Bar는 UV 폭로시험 후에도 표면 산화(Chalking)와 같은 에폭시계 재료의 열화가 나타나지 않았다. 동결융해시험은 120Cycle 및 180Cycle까지 진행하였는데, UV 폭로시험 후 FRP Hybrid Bar를 사용한 공시체는 $241{\pm}kN$ 부착력을 가지고 있었다. 이는 일반철근 대비 약 106.3%수준으로 개선된 부착강도인데, FRP Hybrid Bar 표면의 규사코팅에 따라 부착면적이 증가했기 때문이다. 3가지 조건(일반철근, FRP Hybrid Bar, UV 폭로시험 후의 FRP Hybrid Bar)에 대하여, 동결융해 Cycle이 증가함에 따라 부착력이 크게 감소하지는 않았으나, 코팅된 규사의 박락으로 인해 UV 시험 이후의 동결융해를 거친 조건에서는 실험 편차가 상대적으로 증가하였다.

Keywords

References

  1. Bhavesh G. Kumar., Raman P. Singh., Toshio Nakamura. (2002). Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation, Jornal of Comnposite Materials, 36(24), 2713-2733. https://doi.org/10.1177/002199802761675511
  2. Choi, K.S., You, Y.C., Lee, H.S., Kim, K.H. (2006). Experimental study on freezing-thawing and warm-moisture resistance of frp composites used in strengthening rc members, Korea Concrete Institute, 18(1), 345-348 [in Korean].
  3. Gomez, J., Casto, B. (1996). Freeze/Thaw Durability of Composite Materials, ICCI96, Proc. of first international Conference on Composites in Infrastructure, Tuscon, AZ, 947-955.
  4. Hwang, C.S., Park, J.S., Park, K.T., Kwon, S.J. (2017). Mechanical performance evaluation of rc beams with frp hybrid bars under cyclic loads, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(1), 9-14 [in Korean].
  5. Hwang, Y.E., Lee, G.H., Yoon, S.H. (2009). Effect of combined environmental factors on degradation behavior of carbon fiber/epoxy composites, The Korean Society For Composite Materials, 22(5), 37-42 [in Korean].
  6. KS F 2456. (2013). Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, Korean Agency for Technology and Standards [in Korean].
  7. KS M ISO 4892. (2012). Plastics-Methods of Exposure to Laboratory Light Sources-part 2:Xenon-arc sources, Korean Agency for Technology and Standards [in Korean].
  8. Kumar, G.G., Singh, R.P., Nakamura, T. (2002). Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation, Journal of Composite Materials, 36(24), 2713-2733. https://doi.org/10.1177/002199802761675511
  9. Lee, B.S., Lee, D.C. (1999), A study on the surface degradation properties of epoxy/glass fiber treated with ultraviolet rays, The Transactions of the Korean institute of Electrical Engineers, 28(2), 86-91 [in Korean].
  10. Mehta, P.K. Monterio J.M. (1993). Concrete; Structure, Properties, and Materials, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
  11. Oh, K.S., Park, K.T., Kwon, S.J. (2016). Evaluation of anti-corrosion performance of FRP hybrid bar with notch in ggbfs concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 51-58 [in Korean]. https://doi.org/10.11112/jksmi.2016.20.4.051
  12. Park, K.T. (2013), Development of Enhancing Life Span Technology for Waterfront Structures using FRP Hybrid Bars, KICT [in Korean].
  13. Seo, D.W., Park, K.T., You, Y.J., Kim, H.Y. (2013). Enhancement in elastic modulus of GFRP bars by material hybridization, Engineering, 5(1), 865-869. https://doi.org/10.4236/eng.2013.511105
  14. Song, T.H., Choi, K.S., You, Y.C., Kim, K.H. (2006). Experimental study on ultra-violet resistance of FRP composites used in Strengthening RC members, Korea Concrete Institute, 18(1), 333-336 [in Korean].
  15. Ssadatmznesh, H., Tannous, F. (1997). Durability of FRP rebar and tendon, Non-Metalic (FRP) Reinforcement for Concrete Structure: Proceedings of ther third international symposium, 2, 107-114.