• Title/Summary/Keyword: Hybrid coating

Search Result 316, Processing Time 0.027 seconds

Characteristics of Anti-reflective Coating Film Prepared from Hybrid Solution of TEOS/Base and MTMS/Acid (TEOS/염기 및 MTMS/산 혼성 용액으로 제조한 반사방지 코팅막의 특성)

  • Park, Hyun-Kyu;Kim, Hyo-Sub;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.358-364
    • /
    • 2019
  • To improve the optical characteristics and antifouling of anti-reflective coating (AR) films, various AR coating films were prepared by varying the mixing ratio of tetraethylorthosilicate (TEOS)/base and methyltrimethoxysilane (MTMS)/acid hybrid solution. Prepared AR coating films were characterized by UV-Vis spectroscopy, contact angle analyzer, atomic force microscope (AFM), FT-IR and pencil scratch hardness test. In an AR coating film that prepared from the hybrid solution with a 10 wt% MTMS/acid solution, the glass substrate showed an excellent optical property (97.2% transmittance), good antifouling ($121^{\circ}$ water contact angle and $90^{\circ}\;CH_2I_2$ contact angle) and moderate mechanical strength (pencil hardness of 4 H). In particular, it is considered that the good antifouling was due to the well dispersion of the methyl group ($-CH_3$), derived from a small amount of MTMS/acid solution in the hybrid solution, on the substrate surface. From results of the pencil hardness test, the mechanical strength of AR coating film was improved as the content of MTMS/acid solution increased.

Flexible ITO/PEDOT:PSS Hybrid Transparent Conducting Electrode for Organic Photovoltaics

  • Lim, Kyounga;Jung, Sunghoon;Kang, Jae-Wook;Kim, Jong-Kuk;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.299-299
    • /
    • 2013
  • Indium Tin Oxide (ITO) has widely been used as a transparent conductive oxide (TCE) for photovoltaic devices. Lately, flexibility of ITO becomes an issue as demand of flexible device increases. Several scientists have tried to substitute ITO to different materials such as conductive polymer, graphene, CNT, and metal nanowire because of ITO brittleness. Among the substitute materials, PEDOT:PSS has mostly paid attention because PEDOT:PSS has excellent flexibility and good conductivity. The conductivity of PEDOT:PSS increases up to 1000 S/cm with additives such as DMSO, EG, sorbitol, and so on. In our research group, we introduce a conductive polymer PEDOT:PSS as a buffer layer to improve not only flexibility but also conductivity. As PEDOT:PSS layer forms beneath ITO thin film (20 nm), sheet resistance decreases from $230{\Omega}$/${\Box}$ to $85{\Omega}$/${\Box}$ and crack initiation decreases from 4.5 mm to 3.5 mm as well. We have fabricated organic photovoltaic device and power conversion efficiencies using conventional ITO electrode and ITO/PEDOT:PSS hybrid electrode. The photovoltaic property such as power conversion efficiency for ITO/PEDOT:PSS hybrid electrode is comparable to the value obtained using conventional ITO electrode on glass substrate.

  • PDF

Corrosion Resistance Characteristics of Cr-free Coating Solution for Degraded STS316L (열화한 STS316L에 대한 Cr-free 코팅액의 내식특성)

  • Lee, So-Young;Kim, Young-Soo;Jeong, Hee-Rock;Ahn, Seok-hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.475-480
    • /
    • 2015
  • In this study, we developed a Cr-free organic/inorganic hybrid solution and investigated its coating properties on degraded STS316L. Both the OIBD-1 solution and OIBD-2 solution had excellent corrosion resistance and adhesion ability. However, the solution had some problems in a boiling water environment. In addition, the flexibility was excellent, and the scratch resistance was relatively good.

Microstructure, Mechanical, Oxidation and Corrosion Properties of Zr-Al-N Coatings Synthesized by the Hybrid Coating System (하이브리드 코팅 시스템에 의해 합성된 Zr-Al-N 박막의 미세구조와 기계적 특성, 산화 특성, 부식특성)

  • Choi, Hasong;Jang, Jaeho;An, Eunsol;Kim, Kwang Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.242-247
    • /
    • 2013
  • Zr-Al-N coatings were synthesized by the hybrid coating system combining arc ion plating and DC magnetron sputtering from a Zr and an Al target in argon-nitrogen atmosphere, respectively. By changing the power applied on the Al cathodes, the Zr-Al-N coatings with various Al contents were deposited. The microstructure and chemical compositions of the Zr-Al-N coatings were studied by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). With increasing of Al content in the coatings, the solid solution (Zr, Al)N crystallites were observed in the Zr-Al-N coatings. The nanohardness of the Zr-Al-N coatings exhibited a maximum value of 42 GPa for the Zr-Al (7.9 at.%)-N, and decreased with further increase in Al content in the coatings. The oxidation and corrosion behavior of the Zr-Al-N coatings revealed better properties compared than those of ZrN coatings due to the formation of a solid solution.

Development of AgNW/Reduced Graphene Oxide Hybrid Transparent Electrode with Long-Term Stability Using Plasma Reduction (플라즈마 환원 기술을 응용한 장수명의 은나노와이어/Reduced Graphene Oxide 하이브리드 투명전극 개발)

  • Jung, Sunghoon;Ahn, Wonmin;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.87-91
    • /
    • 2016
  • The development of high performance transparent electrode with flexibility have been required for flexible electronics. Here, we demonstrate the silver nanowire and reduced graphene oxide hybrid transparent electrode for replacing brittle indium-tin-oxide electrode by spray coating technique and plasma reduction. The spray coating system is applied to deposit silver nanowire and over coated graphene oxide films and it has a great potential to scale-up. The resistance of silver nanowire transparent electrode is reduced by 10% and the surface roughness is decreased after graphene oxide coating. The over-coated graphene oxide is successfully reduced by $H_2$ plasma treatment and it is effective in increasing the environmental stability of electrode. The lifetime of silver nanowire and reduced graphene oxide hybrid electrode at $85^{\circ}C$ of Celsius degree of temperature and 85% of relative humidity has much increased.

Enhanced Corrosion Protection Performance by Novel Inhibitor-Loaded Hybrid Sol-Gel Coatings on Mild Steel in 3.5% NaCl Medium

  • Suleiman, Rami K.
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.168-174
    • /
    • 2019
  • The sol-gel methodology has been applied successfully in the synthesis of a novel hybrid coating based on dimethoxymethyl-n-octadecylsilane precursor. The newly synthesized parent coating was functionalized further with two commercially-available corrosion-inhibitive pigments Moly-$white^{(R)}$ 101-ED and Hfucophos $Zapp^{(R)}$, applied to mild steel panels, and immersed continuously in 3.5% NaCl electrolytic solution for 288 h. The corrosion protection performance of the prepared functional coatings was evaluated using electrochemical impedance spectroscopy (EIS) and DC polarization techniques. An enhancement in the barrier properties has been revealed from the electrochemical characterization data of the hybrid films, in comparison with untreated mild steel substrates following long-term immersion in 3.5% NaCl. The corrosion resistance properties of the newly developed coatings over mild steel substrates found to be largely dependent on the type of the loaded inhibitive pigment in which the Moly-white inhibitor has a positive impact on the corrosion protection performance of the parent coating, while an opposite behavior was observed upon mixing the base polymeric matrix with the commercially-available Zapp corrosion inhibitor.

Study on Mechanical Properties of Waterborne Polyurethane-Acrylic Hybrid Resin for Leather Coationgs (피혁가공용 수용성 아크릴-폴리우레탄 Hybrid Resin의 합성 및 기계적 특성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • In this study, we experimented that how to synthesis waterborne urethane-acrylic hybrid resin for leather coatings. First of all, We had analyzed data by FT-IR, SEM and TGA for the machanical properties. By TGA analysis polymers showed heat distortion temperature. and by FT-IR measurement we confirmed that synthesis of urethane and acrylic. In the experiment, solvent resistance, polyurethane and acrylic grades 4-5 showed both a high. Tensile strength measured in the waterborne polyurethane > Acrylic emulsion showed strength in the order. Films were obtained by coating the water born resin on leveled surfaces and allowing them to dry at room temperature for 72hrs. After demolding, the films were kept in a desiccator to avoid moisture contant at $25^{\circ}C$ for 45hrs before the measurements. In this result, the mechanical propersies of waterborne polyurethane-acrylic hybrid resin showed that how effect to resin in leather coating between polyurethane content and acrylic content. Therefore, acrylic emulsion had most high solvent resistance glade and waterborne polyurethane had good result in abrasion test and tensile strength.

Fabrication of Thin Film Dielectric by Hybrid Sol (Hybrid Sol을 이용한 박막 유전체 제작)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.185-191
    • /
    • 2007
  • The purpose of this study is to evaluate the thin fihn dielectric made of hybrid sol, which consist of barium titanate powder, polymeric sol and other polymers. This sol will be used dielectric applied to small, thin electric passive components such as MLCC(Multi Layer Ceramic Condenser), resister, inductor. This sol is composed of mixed fine barium titanate powder and polymeric sol including Ba, Ti-precursor, solvent, chelating agent, chemical reaction catalyst, the additive sols to improve fired densification and temperature reliability. First at all, we mixed hybrid sol to be dispersed and be stabilized by ball milling for 24hrs. By spin coating method, we makes thin film dielectric on the convectional green sheet for MLCC. After heat treatments, we analyzes the structure morphology, physical, electrical properties and X5R Temperature properties.

The Determination of Elastic Constant for Ceramic Forming Material by Hybrid Method (하이브리드 방법에 의한 세라믹 성형재료의 탄성계수 결정)

  • Park Myong Kyun;Koo Bon Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.211-222
    • /
    • 2005
  • The ceramic forming materials are getting more important recently since they are used widely in repairing metal structures, welded metal structures and mechanical components etc. The determination of elastic constants for ceramic coating materials takes much time and efforts in experiment due to the brittleness of ceramic material itself. The aim of this research is to determine the Young's Modulus for ceramic metal coating material. In order to achieve the goal, the hybrid method which uses impulse hammer technique for experimental method and modal analysis of finite element method for computational method was used. The results show good agreement with existing experimental data on Young's Modulus.

Technology of thin Film Formation by Using the Micro Gravure Coater (마이크로 그라비어 코터를 이용한 박막 형성 기술)

  • Kim, Dong Soo;Kim, Jung Su;Bae, Sung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.596-600
    • /
    • 2013
  • We report here on the processing and manufacturing of thin film for printed electronics by micro-gravure coating system. The micro-gravure coating systems are consisted of various modules such as web and system tension controller, micro-gravure coating units, dispenser and hybrid dry units (UV, NIR, Hot air). Especially, for the optimization of system, the number of idle roller was minimized and tension isolating infeeder was included. Also, we applied four patterns circle, 45 degree, square and 35 degree for the optimizing coating thickness. The micro-gravure coating system which applied various patterns to enable continuous coating process and fast coating time compare with conventional batch coating system. In this paper, introduce of micro-gravure coating system and testing results of coating thickness (20~700nm), coating time (1~2sec) and surface roughness (3~12nm) by using micro-gravure coating system.