• Title/Summary/Keyword: Hybrid beam

Search Result 479, Processing Time 0.022 seconds

Fire Resistance of U-shape Hybrid Composite Beam (신형상 U형 하이브리드 합성보의 내화성능에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup;Ryu, Deog Su;Choi, Seng Kwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • This paper aims to experimentally investigate the fire resistance of U-shaped hybrid composite beams protected by spay and paint insulations. Subjected to two and three hours of the Standard ISO fire, the flexural performance of 4.4m beams with/without imposed loadings was examined with respect to failure criteria such as deflection and deflection rate of the mid-span and temperatures measured in the steel section. The results demonstrated that the proposed configuration of the composite beam is able to achieve a very competitive 3-hour fire resistance rating in economical aspects.

Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory (등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석)

  • Choi, In-Sik;Ye, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • 3D finite element analyses of a corrugated steel web girder and a steel truss web girder are conducted to investigate the static and dynamic behaviour of the hybrid girders. And the analyses results are compared with those by the equivalent beam theory. The equivalent theory is a theory that all section properties of a truss structure are replaced by section properties of a beam including a shear coefficient. When applying the equivalent beam theory, the shear coefficient of the corrugated steel web girder is estimated as the area ratio of flange section to web section and that of the steel truss web girder is calculated by the equation proposed by Abdel. Static deflections and natural frequencies by 3D finite element analyses and those by the equivalent beam theory are in good agreement.

Hybrid model-based and deep learning-based metal artifact reduction method in dental cone-beam computed tomography

  • Jin Hur;Yeong-Gil Shin;Ho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2854-2863
    • /
    • 2023
  • Objective: To present a hybrid approach that incorporates a constrained beam-hardening estimator (CBHE) and deep learning (DL)-based post-refinement for metal artifact reduction in dental cone-beam computed tomography (CBCT). Methods: Constrained beam-hardening estimator (CBHE) is derived from a polychromatic X-ray attenuation model with respect to X-ray transmission length, which calculates associated parameters numerically. Deep-learning-based post-refinement with an artifact disentanglement network (ADN) is performed to mitigate the remaining dark shading regions around a metal. Artifact disentanglement network (ADN) supports an unsupervised learning approach, in which no paired CBCT images are required. The network consists of an encoder that separates artifacts and content and a decoder for the content. Additionally, ADN with data normalization replaces metal regions with values from bone or soft tissue regions. Finally, the metal regions obtained from the CBHE are blended into reconstructed images. The proposed approach is systematically assessed using a dental phantom with two types of metal objects for qualitative and quantitative comparisons. Results: The proposed hybrid scheme provides improved image quality in areas surrounding the metal while preserving native structures. Conclusion: This study may significantly improve the detection of areas of interest in many dentomaxillofacial applications.

Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement

  • Ozkilic, Yasin Onuralp;Gemi, Lokman;Madenci, Emrah;Aksoylu, Ceyhun;Kalkan, İlker
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.193-204
    • /
    • 2022
  • The need for establishing the contribution of pultruded FRP encasements and additional FRP wraps around these encasements to the shear strength and load-deflection behavior of reinforced concrete beams is the main motivation of the present study. This paper primarily focuses on the effect of additional wrapping around the composite beam on the flexural and shear behavior of the pultruded GFRP (Glass Fiber Reinforced Polymer) beams infilled with reinforced concrete, taking into account different types of failure according to av/H ratio (arch action, shear-tension, shear-compression and pure bending). For this purpose, nine hybrid beams with variable shear span-to-depth ratio (av/H) were tested. Hybrid beams with 500 mm, 1000 mm, and 1500 mm lengths and cross-sections of 150x100 mm and 100x100 mm were tested under three-point and four-point loading. Based on the testing load-displacement relationship, ductility ratio, energy dissipation capacity of the beams were evaluated with comprehensive macro damage analysis on pultruded GFRP profile and GFRP wrapping. The GFRP wraps were established to have a major contribution to the composite beam ductility (90-125%) and strength (40-75%) in all ranges of beam behavior (shear-dominated or dominated by the coupling of shear and flexure). The composite beams with wraps were showns to reach ductilities and strength values of their counterparts with much greater beam depth.

Recent Technological Tendency of Laser/Arc Hybrid Welding (레이저/아크 하이브리드용접기술의 최신 동향)

  • Kim, Youngsik;Kil, Sangcheol
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.4-15
    • /
    • 2013
  • The laser/arc hybrid welding process is a new process combining the laser beam and the arc as welding heat source. The laser beam and arc influence and assist one another. By application of hybrid welding, synergistic effects are achievable, and disadvantage of the respective processes can be compensated. The laser-arc hybrid welding process has good potential to extend the field of applications of laser technology, and provide significant improvements in weld quality and process efficiency in manufacturing applications. This review analyses the recent advances in the fundamental understanding of hybrid welding processes using the works of the data base of Web of Science (SCI-Expanded) since the 2000 year. The research activity on the hybrid welding has been become more actively since 2006, especially in China, presenting the most research papers in the world. Since the hybrid welding process was adopted in manufacturing of the automobile in Europe in the early of 2000's, its adopting is widely expanded in the field of manufacturing of automobile, ship building, steel construction and the other various industry. The hybrid welding process is expected to advance toward higher productivity, higher precision, higher reliability through the mixing of high power and flexible fiber laser or disk laser and digitalized pulsed arc source.

The Bearing Strength of Connections Between Steel Coupling Beam and Reinforced Concrete Shear Walls

  • Yun, Hyun Do;Park, Wan Shin;Han, Min Ki;Kim, Sun Woo;Kim, Yong Chul;Hwang, Sun Kyung
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • No specific guidelines are available for computing the bearing strength of connection between steel coupling beam and reinforced concrete shear wall in a hybrid wall system. There were carried out analytical and experimental studies on connection between steel coupling beam and concrete shear wall in a hybrid wall system. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i.e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The proposed equations in this study were in good agreement with both our test results and other test data from the literature.

Study on the Flexible Strength of U-shape Hybrid Composite Beam (신형상 U형 하이브리드 합성보의 휨성능에 대한 연구)

  • Kim, Sung-Bae;Kim, Sang-Seup;Lee, Won-Rok;Kim, Jung-Yeon;Lee, Seung-Bae;Ryu, Deog-Su;Kim, Dae-Hoi
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.521-534
    • /
    • 2012
  • In this research, we carry this study into effect on the basis of utilizing character of composite beam and developing applicable section to some of high strength steel. We evaluated flexural capacity of composite beam that is a unit member through experiments. The existing nominal strength formula of Composite Beam which is a previous method was reviewed and the experiment had been progressive by using each composite members as main variables though the result. Capacity evaluation of U-shape Hybrid Forming Beam(HyFo Beam) which is a new shape show as follow from the result. First, it is resonable to resist demand moment by couple moments which are occurred in concrete compressive-strength and steel tensile-strength. Second, the capacity was stably increased in proportion to the depth of beams and the thickness of steel plates. The last, HyFo Beam was showed as ductile behavior.

Reasonably completed state assessment of the self-anchored hybrid cable-stayed suspension bridge: An analytical algorithm

  • Kai Wang;Wen-ming Zhang;Jie Chen;Zhe-hong Zhang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.159-175
    • /
    • 2024
  • In order to solve the problem of calculating the reasonable completed bridge state of a self-anchored hybrid cable-stayed suspension bridge (SA-HCSB), this paper proposes an analytical method. This method simplifies the main beam into a continuous beam with multi-point rigid supports and solves the support reaction forces. According to the segmented catenary theory, it simultaneously solves the horizontal forces of the main span main cables and the stay cables and iteratively calculates the equilibrium force system on the main beam in the collaborative system bridge state while completing the shape finding of the main span main cable and stay cables. Then, the horizontal forces of the side span main cables and stay cables are obtained based on the balance of horizontal forces on the bridge towers, and the shape finding of the side spans are completed according to the segmented catenary theory. Next, the difference between the support reaction forces of the continuous beam with multiple rigid supports obtained from the initial and final iterations is used to calculate the load of ballast on the side span main beam. Finally, the axial forces and strains of each segment of the main beam and bridge tower are obtained based on the loads applied by the main cable and stay cables on the main beam and bridge tower, thereby obtaining analytical data for the bridge in the reasonable completed state. In this paper, the rationality and effectiveness of this analytical method are verified through a case study of a SA-HCSB with a main span of 720m in finite element analysis. At the same time, it is also verified that the equilibrium force of the main beam under the reasonably completed bridge state can be obtained through iterative calculation. The analytical algorithm in this paper has clear physical significance, strong applicability, and high accuracy of calculation results, enriching the shape-finding method of this bridge type.

Experimental studies on seismic behavior of steel coupling beams

  • Park, Wan-Shin;Yun, Hyun-Do;Chung, Jae-Yong;Kim, Yong-Chul
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.695-712
    • /
    • 2005
  • Hybrid coupled shear walls in tall buildings are known as efficient structural systems to provide lateral resistance to wind and seismic loads. Multiple hybrid coupled shear walls throughout a tall building should be joined to provide additional coupling action to resist overturning moments caused by the lateral loading. This can be done using a coupling beam which connects two shear walls. In this study, experimental studies on the hybrid coupled shear wall were carried out. The main test variables were the ratios of coupling beam strength to connection strength. Finally, this paper provides background for rational design guidelines that include a design model to behave efficiently hybrid coupled shear walls.

Fracture analysis of spot-welds with an edge crack using 2-D hybrid special finite element (이차원 하이브리드 특별 요소을 이용한 균열을 내포하는 용접점의 파단 해석)

  • Yang C. H.;Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.39-42
    • /
    • 2004
  • In the present paper, a novel systematic method using the 2-D hybrid special finite elements containing an edge crack is employed to study the fracture behaviors of laser beam spot-welds in automotive structures. 2-D hybrid special finite elements each containing an edge crack can assure the high precision especially in the vicinity of crack tips and give a better description of its singularity with only one hybrid element surrounding one crack. Therefore, the numerical modeling of the laser beam spot-welds can be greatly simplified. Some numerical examples are provided to demonstrate the validity and versatility of the proposed method. All the lap-shear, lap-tension and angle clip specimens are analyzed and some useful fracture parameters (such as stress intensity factors, the initial direction of crack growth) are obtained simultaneously.

  • PDF