• Title/Summary/Keyword: Hybrid battery

검색결과 538건 처리시간 0.031초

태양광/디젤 하이브리드 시스템 기반 센서 구동 및 환경 모니터링 컨테이너 하우스 개발 (Development of Container House Equipped with Sensing and Environmental Monitoring System Based on Photovoltaic/Diesel Hybrid System)

  • 박미정;주종율;김응곤
    • 한국전자통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.459-464
    • /
    • 2023
  • 본 논문은 태양광을 이용하여 에너지를 발전하여 생성되는 전력으로 각종 센서 및 환경 모니터링이 가능하도록 계통 독립형 전력을 공급한다. 생산된 잉여 전력은 리튬 배터리에 저장시켜 태양광이 없는 환경에서도 컨테이너 하우스가 원활한 구동이 가능하도록 설계하였다. 긴 장마나 폭설로 인하여 태양광 생성이 어려우면 디젤발전으로 시스템이 멈추지 않고 구동할 수 있도록 하였다. 태양광 및 전력 관리를 위해 BMS(Battery Management System)를 구축하여 태양광 방/충전 및 사용량을 모니터링한다. 각종 센싱 데이터를 자동으로 기록하고 전송되며, 컴퓨터 및 스마트폰 앱을 통해 무선 모니터링이 가능하도록 설계하였다. 본 연구에서 제안하는 컨테이너 하우스는 계통 전원이 없는 오지, 공원, 행사장, 공사현장 등에서 최적의 에너지 운영을 수행함으로써 효율적인 에너지 관리가 가능하다.

Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes

  • Kamenskii, Mikhail A.;Eliseeva, Svetlana N.;Volkov, Alexey I.;Kondratiev, Veniamin V.
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.177-185
    • /
    • 2022
  • Electrochemical properties of LiMn2O4 cathode were investigated in three types of Zn-containing electrolytes: lithium-zinc sulfate electrolyte (1M ZnSO4 / 2M Li2SO4), zinc sulfate electrolyte (2MZnSO4) and lithium-zinc-manganese sulfate electrolyte (1MZnSO4 / 2MLi2SO4 / 0.1MMnSO4). Cyclic voltammetry measurements demonstrated that LiMn2O4 is electrochemically inactive in pure ZnSO4 electrolyte after initial oxidation. The effect of manganese (II) additive in the zinc-manganese sulfate electrolyte on the electrochemical performance was analyzed. The initial capacity of LiMn2O4 is higher in presence of MnSO4 (140 mAh g-1 in 1 M ZnSO4 / 2 M Li2SO4 / 0.1 M MnSO4 and 120 mAh g-1 in 1 M ZnSO4 / 2MLi2SO4). The capacity increase can be explained by the electrodeposition of MnOx layer on the electrode surface. Structural characterization of postmortem electrodes with use of XRD and EDX analysis confirmed that partially formed in pure ZnSO4 electrolyte Zn-containing phase leads to fast capacity fading which is probably related to blocked electroactive sites.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • 윤원섭;이상우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구 (Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor)

  • 권태순;박지현;강석원;정락교;한상진
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.242-246
    • /
    • 2017
  • 고온에서 Mn 이온 용출에 의한 성능저하를 보이는 스피넬 결정구조의 $LiMn_2O_4$ 양극 하이브리드 커패시터의 대안으로 열안정성이 높은 올리빈 결정구조의 $LiFePO_4$ 기반 복합양극 소재의 적용가능성을 연구하였다. $LiFePO_4$/활성탄셀을 이용한 1.0~2.3 V의 충 방전을 통한 수명평가에서 상온($25^{\circ}C$) 및 고온($60^{\circ}C$) 조건 모두에서 충 방전 사이클이 진행됨에 따라 음극(활성탄)의 저전압화에 따른 열화로 인한 용량저하 현상이 나타났다. 이의 해결을 위해 50:50 중량비율로 $LiFePO_4/LiMn_2O_4$, $LiFePO_4$/Activated carbon 및 $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ 복합양극을 제조하여 모노셀 충 방전 실험을 수행한 결과, 층상구조의 $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$를 사용한 전극이 안정적인 전압거동을 보였다. 또한, 2.3 V 및 $80^{\circ}C$에서 1,000시간 부하를 통한 고온 안정성 실험에서도 $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ 복합양극이 상용 $LiMn_2O_4$ 양극에 비해 약 2배 가량 높은 방전용량 유지율을 보였다.

다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가 (Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization)

  • 이도현;한슬기;김지용
    • Korean Chemical Engineering Research
    • /
    • 제55권3호
    • /
    • pp.332-340
    • /
    • 2017
  • 본 연구에서는 다목적 최적화 기법을 이용하여 다양한 신재생에너지 자원 기반 통합 에너지 공급 시스템을 설계 및 평가 한다. 본 연구에서는 에너지 공급 시스템의 주요 구성요소로써 태양광 모듈, 풍력터빈 및 화석연료 기반 발전장치 등 에너지 생산 기술을 비롯하여 배터리와 인버터 등의 전력 에너지 저장 및 변환 장치 등도 포함한다. 특히, 6개의 한국 대표 지역을 선별하여 각 지역의 에너지 요구량 및 실제 신재생 에너지 자원 데이터를 기반으로 최적의 독립 통합 에너지 공급 시스템을 설계하였으며, 총 소요비용, 단위에너지비용 및 생애주기 이산화탄소 배출 분석 등, 다양한 지표를 이용하여 시스템의 경제성 및 환경성을 분석한다. 특히 다목적최적화 기법을 이용하여 최소 비용과 최소 이산화탄소 배출 등 두 목적함수를 동시에 만족하는 파레토 솔루션을 규명함으로써 신재생 자원 기반 독립 에너지 공급 시스템 설계의 가능성 및 효과를 정량적으로 분석하였다. 분석 결과, 신재생에너지 자원이 좋은 지역일수록 시스템 구축 비용 증가에 따른 이산화탄소 절감 효과가 높은 것으로 나타났다. 또한, 신재생에너지 자원 기반 에너지 공급 시스템의 전력 단가는 현재 기존 단가보다 평균 0.35~0.46 $/kWh높게 나타났으며, 이산화탄소 배출량의 경우 기존 배출량보다 470~490 g$CO_2$/kWh정도의 저감효과를 보임을 분석하였다.

Si3N4-코팅 유/무기 복합 분리막을 통한 리튬이온전지용 분리막의 제조 및 평가 (Fabrication and Evaluation of Si3N4-coated Organic/inorganic Hybrid Separators for Lithium-ion Batteries)

  • 여승훈;손화영;서명수;노태욱;김규철;김현일;이호춘
    • 전기화학회지
    • /
    • 제15권1호
    • /
    • pp.48-53
    • /
    • 2012
  • 리튬 이차전지의 대표적인 분리막인 polyethylene(PE) 분리막은 열에 의한 수축 및 기계적 파열의 단점을 가지고 있다. 본 연구에서는 이러한 기존 PE 분리막을 개선하기 위해 $Si_3N_4$ 코팅 분리막 (SCS, Silicon-nitride Coated Separator)을 제작하였다. $Si_3N_4$ 코팅이 분리막의 열적/기계적 수치안정성, 이온전도도, 및 전지의 출력 특성에 미치는 영향을 알아보았다. $Si_3N_4$ 분말을 polyvinylidene fluoride(PVdF) 결착재를 이용하여 PE 분리막의 한 쪽 면에 10 ${\mu}m$ 두께로 코팅하여 SCS를 제작하였다. SCS는 PE 분리막보다 $100{\sim}150^{\circ}C$에서 우수한 열적안정성을 나타냈으며, 특히 $150^{\circ}C$에서의 수축률은 10~20% 감소를 보였다. 또한, SCS의 인장강도는 PE 분리막에 비해 증가를 보였다. SCS는 PE 분리막에 비해 다소 낮은 이온 전도도를 보였지만, $LiCoO_2$/Li 코인전지의 C-rate(0.2~3C) 특성 평가에서는 유사한 결과를 보였다.

이차전지 양극활물질 제조용 소성로의 열화학적 해석 (Thermo-Chemical Analysis of a Calcination Furnace to Produce Cathode Material for the Secondary Batteries)

  • 황민영;김용균;전충환;송주헌;김용태;장윤한
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.155-161
    • /
    • 2009
  • 리튬 2차전지는 휴대용 전자기기의 전원으로 사용되어 왔다. 최근 하이브리드 자동차, 전기자동차의 에너지 저장매체로써 적용으로 인해 시장 확대가 기대되고 있다. 양극 활물질은 리튬2차전지의 성능, 수명, 용량을 결정하는 물질이며, 급증하는 시장의 수요에 따라 양극 활물질을 대량으로 생산할 수 있는 기술을 개발하는 것이 시급하다. 본 연구에서 실제 양극 활물질($LiCoO_2$) 생산라인에서 가동 중인 소성로를 3D 모델링하였고, 수치적 해석을 통해 소성로 내부의 온도와 유동의 방향, 화학적 거동을 밝혀내었다. 결과로써, 생산량 증가로 인해 소성로에서 생성되는 $CO_2$ 농도가 증가하며 정체되는 지점을 확인하였고, TGA-DSC 실험을 통해 $CO_2$가 몰분율 15%이상에선 $LiCoO_2$의 적절한 형성에 영향을 주는 현상을 확인하였다. 또한 소성로의 형상변화와 공정조건의 변화를 통해 문제되는 $CO_2$를 원활히 배출할 수 있는 해결책을 제안하였다.

UPS 파워 팩 내부 연료전지의 냉각특성에 대한 수치 해석 (A Study on Numerical Analysis for Internal PEMFC Cooling of Power Pack for UPS)

  • 송준석;김병헌
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.527-535
    • /
    • 2017
  • 연료전지 배터리 하이브리드 UPS용 연료전지 파워 팩 내부에 설치한 연료전지의 화학반응에 의해 생성되는 열을 제거하는데 어려움이 있다. 열을 제거하지 못할 경우 연료전지의 내구성과 성능에 영향을 끼쳐 수명 단축의 원인이 된다. UPS용 연료전지 파워 팩 제작을 위하여 연료전지의 적절한 냉각 방법을 선정하고 제시하는 것이 본 연구의 목표이다. 냉각방법 선정을 위해 냉각 성능에 영향을 주는 각각의 설계 인자를 변화시키면서 연구를 수행하였다. 전산해석은 상용프로그램인 COMSOL Multiphysics로 수행하였다. 먼저 연료전지 스택의 냉각 팬의 위치를 상단과 하단에 배치했을 때 1 kW급 연료전지 스택 표면온도를 비교하였으며, 각각의 위치에 따른 냉각 팬의 회전속도를 2,500, 3,000, 3,500, 4,000 RPM으로 변경하여 적절한 냉각 팬의 속도를 결정하였다. 또한 파워 팩 외부에서 내부로 들어오는 공기의 입구인 그릴의 타공면적을 달리하여 내부로 들어오는 공기의 유량이 냉각에 미치는 영향을 비교하였다. 본 연구는 UPS용 연료전지 파워 팩 내부 연료전지의 열관리 기술개발에 효과적으로 활용될 수 있을 것으로 판단된다.