• Title/Summary/Keyword: Hybrid Technology

Search Result 3,830, Processing Time 0.039 seconds

Correlation of Zoysia Grass (Zoysia. spp) Survival, Reproduction, and Floret Appearance Rates to Aid in Development of New Hybrid Zoysia Grass Cultivars (잔디 교잡 품종 개발을 위한 잔디 생존률, 재생산률 및 꽃대 출현률과의 상관관계)

  • Han, Gyung Deok;Jung, Ji Hyeon;Chung, Yong Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.265-269
    • /
    • 2021
  • This study was conducted to provide primary data through analysis of zoysia grass genetic resources to develop grass cultivars with beneficial novel properties. Zoysia grass (Zoysia. spp) is native to Korea, and is mainly propagated through stolons. However, since seed coat treatment technology was developed, the breeding of sexually reproductive grass variants has become possible, necessitating characterization of the floret appearance rate in the secured zoysia grass genetic resource before developing sexually reproductive cultivars. In this experiment, 549 grass lines were examined, revealing that florets appear in only 43 lines (7.81%). Survival rates after transplantation, and stolon generation rates displayed a significant positive correlation (Rho = 0.44). Survival rates after transfer, and rates of stolon production displayed very low correlations with floret appearance (Rho = -0.11 and Rho = -0.06). No significant results were obtained in 43 lines that displayed >20% floret appearance. To breed sexually reproductive grass variants, it is thus necessary to secure more genetic resources, considering the low rate of floret appearance. Finding traits that predict floret appearance at an early stage is also required.

Development of New Strains of Wolfiporia cocos for Sclerotium Formation by 2-Way Cross-Breeding (이원교배에 의해 균핵 형성하는 복령 균주 개발)

  • Ka, Kang-Hyeon;Kim, Suyeon;Park, Mi-Jeong;Jeong, Yeun Sug;Ryoo, Rhim;Jang, Yeongseon;Choi, Jong-Woon;Kim, Seong Hwan
    • The Korean Journal of Mycology
    • /
    • v.49 no.3
    • /
    • pp.405-412
    • /
    • 2021
  • Wolfiporia cocos is an important medicinal fungus that has been used in regions of Northeast Asia including Korea, Japan, and China. W. cocos is classified in Korea into two types (red bokryeong and white bokryeong) based on the internal colors (yellow orange-pale pink and white) of the sclerotium. Generally, the W. cocos type cultivated on farms produces white sclerotium. In this study, we endeavored to select strains that form sclerotium in sawdust medium using 2-way cross-breeding among two cultivated strains and three wild strains. Monospores were isolated from the fruiting bodies of cultivated and wild strains on potato dextrose agar. Thirty-nine strains of 338 hybrid strains isolated formed sclerotia with white or yellow colors upon culture for 3 months in Pinus densiflora sawdust medium. Selection for sclerotium forming strains using sawdust culture follows a very simple and easy procedure that is presented for the first time in this paper. We plan to test selected strains in the field to aid in developing new varieties for the future.

Effect of Occurrence of Scion Root on the Growth and Root Nutrient Contents of 'Shiranuhi' Mandarin Hybrid grown in Plastic Film House (자근발생이 부지화 감귤나무의 수체 생육과 뿌리내 양분함량에 미치는 영향)

  • Kang, Seok-Beom;Moon, Young-Eel;Yankg, Gyeong-Rok;Joa, Jae-Ho;Han, Seong-Gap;Lee, Hae-Jin;Park, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.154-158
    • /
    • 2019
  • BACKGROUND: 'Shiranuhi' mandarin is a major cultivar among all late ripening type of citrus, and is widely cultivated in Korea. However, many farmers have reported scion root problems in their orchard resulting in reduced flowering and fruiting. It is necessary that the physiology of scion-rooted 'Shiranuhi' mandarin trees is further understood. METHODS AND RESULTS: This experiment was conducted to understand the growth response and physiology of scion-rooted 'Shiranuhi' mandarin hybrids. In our study, 'Shiranuhi' mandarin trees were divided into two groups: trees without scion roots (control) and trees with scion roots. The experiment was conducted in Seogwipo of Jeju, with ten replicates for each group. Growth of trees with scion roots was more vigorous and the trees were taller than the controls. Tree height and trunk diameter of scion-rooted trees were significantly higher than those of control trees. Exposed length of rootstocks of scion-rooted trees was significantly lower (by about 2 cm) than that of control trees (8.6 cm). In terms of root nutrition, carbon contents of scion-rooted trees was significantly lower than that of control trees, but nitrogen and potassium concentrations in scion roots were significantly higher than those in control roots. CONCLUSION: Based on the results, we infer that growth of scion-rooted trees was very vigorous and the content of nitrogen in these roots was higher than that in the control tree roots. Thus, the carbon/nitrogen ratio of scion roots was significantly lower than that of the control roots.

A Method for Prediction of Quality Defects in Manufacturing Using Natural Language Processing and Machine Learning (자연어 처리 및 기계학습을 활용한 제조업 현장의 품질 불량 예측 방법론)

  • Roh, Jeong-Min;Kim, Yongsung
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.52-62
    • /
    • 2021
  • Quality control is critical at manufacturing sites and is key to predicting the risk of quality defect before manufacturing. However, the reliability of manual quality control methods is affected by human and physical limitations because manufacturing processes vary across industries. These limitations become particularly obvious in domain areas with numerous manufacturing processes, such as the manufacture of major nuclear equipment. This study proposed a novel method for predicting the risk of quality defects by using natural language processing and machine learning. In this study, production data collected over 6 years at a factory that manufactures main equipment that is installed in nuclear power plants were used. In the preprocessing stage of text data, a mapping method was applied to the word dictionary so that domain knowledge could be appropriately reflected, and a hybrid algorithm, which combined n-gram, Term Frequency-Inverse Document Frequency, and Singular Value Decomposition, was constructed for sentence vectorization. Next, in the experiment to classify the risky processes resulting in poor quality, k-fold cross-validation was applied to categorize cases from Unigram to cumulative Trigram. Furthermore, for achieving objective experimental results, Naive Bayes and Support Vector Machine were used as classification algorithms and the maximum accuracy and F1-score of 0.7685 and 0.8641, respectively, were achieved. Thus, the proposed method is effective. The performance of the proposed method were compared and with votes of field engineers, and the results revealed that the proposed method outperformed field engineers. Thus, the method can be implemented for quality control at manufacturing sites.

Constructed Wetlands in Treating Domestic and Industrial Wastewater in India: A Review (인도의 가정 및 산업 폐수 처리를 위한 인공습지: 총론)

  • Farheen, K.S.;Reyes, N.J.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.242-251
    • /
    • 2021
  • Surface water pollution is a serious environmental problem in developing countries, like India, due to the unregulated discharge of untreated wastewater. To overcome this, the constructed wetlands (CWs) have been proven to be an efficient technology for wastewater treatment. In this study, different existing and experimental facilities were reviewed to be able to determine the current status of constructed wetlands in India. Based on the collected data from published literature, industrial wastewater contained the highest average chemical oxygen demand (COD), biochemical oxygen demand (BOD). In terms of total nitrogen (TN), Total phosphorous (TP), the lowest concentration was found on domestic wastewater. Vertical flow constructed wetlands (VFCW) and Horizontal flow constructed wetland (HFCW) were more effective in removing TSS, BOD, TP in domestic and industrial wastewater, whereas hybrid constructed wetlands (HCW) showed the highest removal for COD. The use of constructed wetlands as advanced wastewater treatment facilities in India yielded better water quality. The treatment of wastewater using constructed wetlands also enabled further reuse of wastewater for irrigation and other agricultural purposes. Overall, this study can be beneficial in evaluating and promoting the use of constructed wetlands in India.

The Characteristics of Neuro-image in Post-cinema through Morphing Technique in (2013) (<블랙 스완>(2013)의 몰핑 기술을 통해 본 포스트 시네마의 신경-이미지적 특징)

  • Jang, Mi-Hwa;Moon, Jae-Cheol
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.5
    • /
    • pp.45-53
    • /
    • 2021
  • Digital morph expresses the imaginary beyond the representation of reality by expressing the narrative effect characteristically. In particular, the effect of affect can be considered to be a characteristic of digital cinema as a post-cinema. In (2013), Morphing image prominently shows the characteristics of post-cinema. By actively utilizing software technology, this film gives a shocking effect by expressing the magical image. Paying attention to the post-cinematic characteristics of morphing different from classical film, this article treated the characteristics of digital morphing. The digital morphing presents the flow of affect visualizing uncanny phenomenon of body transformation. This evokes concept of neuro-image which Patricia Pisters distinguished the neuropsychiatric pathology that appears actively on the contemporary digital screen. The Neuro-image goes beyond the temporality of Deleuze's time-image presenting future. Allegedly, the morphing of presents the neuro-images when Nina's body changed to hybrid body with black swan. Digital Morphing technique provides a shocking effect, showing delirium when the body bizarrely deformed while dancing ballet. This is different from the attraction of the morphing in film, it expresses the emotion of the neoliberal era beyond representation. In conclusion, the digital morphing presents the neuro-image system modulating the shock. This shows the characteristics of digital film which interacting and controling the shock effect as post-cinema.

Design and Implementation of Interface System for Swarm USVs Simulation Based on Hybrid Mission Planning (하이브리드형 임무계획을 고려한 군집 무인수상정 시뮬레이션 시스템의 연동 인터페이스 설계 및 구현)

  • Park, Hee-Mun;Joo, Hak-Jong;Seo, Kyung-Min;Choi, Young Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Defense fields widely operate unmanned systems to lower vulnerability and enhance combat effectiveness. In the navy, swarm unmanned surface vehicles(USVs) form a cluster within communication range, share situational awareness information among the USVs, and cooperate with them to conduct military missions. This paper proposes an interface system, i.e., Interface Adapter System(IAS), to achieve inter-USV and intra-USV interoperability. We focus on the mission planning subsystem(MPS) for interoperability, which is the core subsystem of the USV to decide courses of action such as automatic path generation and weapon assignments. The central role of the proposed system is to exchange interface data between MPSs and other subsystems in real-time. To this end, we analyzed the operational requirements of the MPS and identified interface messages. Then we developed the IAS using the distributed real-time middleware. As experiments, we conducted several integration tests at swarm USVs simulation environment and measured delay time and loss ratio of interface messages. We expect that the proposed IAS successfully provides bridge roles between the mission planning system and other subsystems.

Development trends of Solar cell technologies for Small satellite (소형위성용 태양전지 개발 동향 및 발전 방향)

  • Choi, Jun Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.310-316
    • /
    • 2021
  • Conventional satellites are generally large satellites that are multi-functional and have high performance. However, small satellites have been gradually drawing attention since the recent development of lightweight and integrated electric, electronic, and optical technologies. As the size and weight of a satellite decrease, the barrier to satellite development is becoming lower due to the cost of manufacture and cheaper launch. However, solar panels are essential for the power supply of satellites but have limitations in miniaturization and weight reduction because they require a large surface area to be efficiently exposed to sunlight. Space solar cells must be manufactured in consideration of various space environments such as spacecraft and environments with solar thermal temperatures. It is necessary to study structural materials for lightweight and high-efficiency solar cells by applying an unfolding mechanism that optimizes the surface-to-volume ratio. Currently, most products are developed and operated as solar cell panels for space applications with a triple-junction structure of InGaP/GaAs/Ge materials for high efficiency. Furthermore, multi-layered junctions have been studied for ultra-high-efficiency solar cells. Flexible thin-film solar cells and organic-inorganic hybrid solar cells are advantageous for material weight reduction and are attracting attention as next-generation solar cells for small satellites.

Detection of single-nucleotide polymorphism in RPB2 of Wolfiporia hoelen strains and assessment of its applicability for strain breeding (복령 균주의 RPB2 유전자 내 단일염기다형성 및 육종 활용성 분석)

  • Su Yeon, Kim;Mi-Jeong, Park;Seong Hwan, Kim;Kang-Hyeon, Ka
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.199-207
    • /
    • 2022
  • The demand for novel strains has been rising in the domestic market to increase the production of sclerotia from Wolfiporia hoelen. To improve strain breeding efficiency, we investigated whether single-nucleotide polymorphisms (SNPs) in the RNA polymerase II subunit (RPB2) gene, which may be linked to the mating type locus, are useful for distinguishing monokaryons from dikaryons in Korean W. hoelen strains. We designed a specific primer set to efficiently amplify a region of RPB2 using PCR with the genomic DNA of 12 cultivated strains and 31 wild strains of W. hoelen collected from Korea. Nucleotide sequences of the PCR-amplified RPB2 genes were determined and analyzed for the presence of SNPs among the 43 W. hoelen strains. Previously reported SNP loci were detected in the RPB2 gene of all W. hoelen strains tested. However, these previously reported SNP loci could not be applied to differentiate monokaryons from dikaryons in approximately one-third of Korean wild strains with homozygous genotypes. Three additional SNPs in the RPB2 gene, which may improve the ability to distinguish monokaryons from dikaryons, were identified by searching through the multiple sequence alignments of the 43 W. hoelen strains. The applicability of these three novel SNPs, together with the previously known SNPs, in the RPB2 gene to W. hoelen strain breeding was verified by examining the hybrid strains and their parental strains.

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.