• Title/Summary/Keyword: Hybrid Structures

Search Result 989, Processing Time 0.03 seconds

Chromosomal Localization and Mutation Detection of the Porcine APM1 Gene Encoding Adiponectin (Adiponectin을 암호화하는 돼지 APM1 유전자의 염색체상 위치파악과 돌연변이 탐색)

  • Park, E.W.;Kim, J.H.;Seo, B.Y.;Jung, K.C.;Yu, S.L.;Cho, I.C.;Lee, J.G.;Oh, S.J.;Jeon, J.T.;Lee, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.537-546
    • /
    • 2004
  • Adiponectin is adipocyte complement-related protein which is highly specialized to play important roles in metabolic and honnonal processes. This protein, called GBP-28, AdipoQ, and Acrp30, is encoded by the adipose most abundant gene transcript 1 (APM1) which locates on human chromosome 3q27 and mouse chromosome 16. In order to determine chromosomal localization of the porcine APM1, we carried out PCR analysis using somatic cell hybrid panel as well as porcine whole genome radiation hybrid (RH) panel. The result showed that the porcine APM1 located on chromosome 13q41 or 13q46-49. These locations were further investigated with the two point analysis of RH panel, revealed the most significant linked marker (LOD score 20.29) being SIAT1 (8 cRs away), where the fat-related QTL located. From the SSCP analysis of APM1 using 8 pig breeds, two distinct SSCP types were detected from K~ native and Korean wild pigs. The determined sequences in Korean native and Korean wild pigs showed that two nucleotide positions (T672C and C705G) were substituted. The primary sequence of the porcine APM1 has 79 to 87% identity with those of human, mouse, and bovine APM1. The domain structures of the porcine APM1 such as signal sequence, hypervariable region, collagenous region. and globular domain are also similar to those of mammalian genes.

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.705-712
    • /
    • 2009
  • HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.

The Properties of Durability and Strength of Fiber-Reinforced Polymer-Modified Mortars Using Eco-Friendly UM Resin (친환경 UM수지를 사용한 섬유보강 폴리머 시멘트 모르타르의 내구성 및 강도 특성)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • In this study, performance of fiber-reinforced polymer-modified mortar was studied for the development of eco-friendly materials for high performance repair and reinforcement. The general cement mortar and eco-friendly UM resin was mixed with a certain percentage for increased durability. To increase the strength of the polymer-modified mortar, PVA fiber, steel fiber and hybrid fiber were added at a constant rate. Hybrid fiber is contains the same percentage of PVA fiber and steel fiber. In order to determine the strength properties of fiber-reinforced polymer-modified mortar, the compressive strength test, the splitting tensile strength test and the flexural strength test were performed. And, in order to determine the durability properties of fiber-reinforced polymer-modified mortar, water absorption test and chemical resistance test were performed. From the experimental results, polymer-modified mortar using UM resin was improved durability. And the tensile strength and flexural strength increased, which were the vulnerability of fiber reinforced polymer-modified mortar. From this study, fiber-reinforced polymer-modified mortar using eco-friendly UM resin can be used to repair and reinforcement for the external exposure of concrete structures to improve the durability.

Topography of Post-Genomic Researches in Korea: Governance and Institutional Polymorphism (포스트게놈 시대의 국내 유전체연구 현황: 한국적 거버넌스의 제도적 다형성 연구)

  • Lee, June-Seok
    • Journal of Science and Technology Studies
    • /
    • v.15 no.1
    • /
    • pp.145-180
    • /
    • 2015
  • Human Genome Project was a big science done by United States, U.K., France, China, Germany and Japan. But in Korea HGP was not constructed because of lack of governmental funding and failure to attract relevant actors' attention in spite of small voices from early genome researchers and some family members of patients with incurable diseases. This article does not argue that HGP in Korea was an undone science, a concept claimed by Scott Frickel, et al. Instead, it shows the historical fact that HGP was not constructed in Korea in 1990s and analyzes how genomic researches could become possible in Korea in the post-genomic age using the framework of triple-helix. In Korea, researchers have constructed hybrid networks and organizations that intermingles laboratories of university, industry, and government to conduct genomic researches which requires a lot of financial funding. This structure is different from the entrepreneurial university seen in developed countries such as the United States. Using two examples, this article shows that founding a start-up company by university researchers was not an option as in the United States, but a necessity in order to obtain enough funding to conduct genomic researches in Korea. Otherwise, researchers in Korean universities had to form hybrid networks with government to obtain small amount of funds to conduct researches. I argue that this phenomenon shows multifaceted characteristics of institutional structures regarding genomic researches in Korea.

Development of the New Hybrid Evolutionary Algorithm for Low Vibration of Ship Structures (선박 구조물의 저진동 설계를 위한 새로운 조합 유전 알고리듬 개발)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.164-170
    • /
    • 2006
  • This paper proposes a RSM-based hybrid evolutionary algorithm (RHEA) which combines the merits of the popular programs such as genetic algorithm (GA), tabu search method, response surface methodology (RSM). This algorithm, for improving the convergent speed that is thought to be the demerit of genetic algorithm, uses response surface methodology and simplex method. The mutation of GA offers random variety to finding the optimum solution. In this study, however, systematic variety can be secured through the use of tabu list. Efficiency of this method has been proven by applying traditional test functions and comparing the results to GA. And it was also proved that the newly suggested algorithm is very effective to find the global optimum solution to minimize the weight for avoiding the resonance of fresh water tank that is placed in the rear of ship. According to the study, GA's convergent speed in initial stages is improved by using RSM method. An optimized solution is calculated without the evaluation of additional actual objective function. In a summary, it is concluded that RHEA is a very powerful global optimization algorithm from the view point of convergent speed and global search ability.

  • PDF

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Design of Hybrid Parallel Architecture for Fast IP Lookups (고속 IP Lookup을 위한 병렬적인 하이브리드 구조의 설계)

  • 서대식;윤성철;오재석;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.345-353
    • /
    • 2003
  • When designing network processors or implementing network equipments such as routers are implemented, IP lookup operations cause the major impact on their performance. As the organization of the IP address becomes simpler, the speed of the IP lookup operations can go faster. However, since the efficient management of IP address is inevitable due to the increasing number of network users, the address organization should become more complex. Therefore, for both IPv4(IP version 4) and IPv6(IP version 6), it is the essential fact that IP lookup operations are difficult and tedious. Lots of researcher for improving the performance of IP lookups have been presented, but the good solution has not been came out. Software approach alleviates the memory usage, but at the same time it si slow in terms of searching speed when performing an IP lookup. Hardware approach, on the other hand, is fast, however, it has disadvantages of producing hardware overheads and high memory usage. In this paper, conventional researches on IP lookups are shown and their advantages and disadvantages are explained. In addition, by mixing two representative structures, a new hybrid parallel architecture for fast IP lookups is proposed. The performance evaluation result shows that the proposed architecture provides better performance and lesser memory usage.

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF

Development of the New Hybrid Evolutionary Algorithm for Low Vibration of Ship Structures (선박 구조물의 저진동 설계를 위한 새로운 조합 유전 알고리듬 개발)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.665-673
    • /
    • 2006
  • This paper proposes a RSM-based hybrid evolutionary Algorithm (RHEA) which combines the merits of the popular programs such as genetic algorithm (GA), tabu search method and response surface methodology (RSM). This algorithm, for improving the convergent speed that is thought to be the demerit of genetic algorithm, uses response surface methodology and simplex method. The mutation of GA offers random variety to finding the optimum solution. In this study, however, systematic variety can be secured through the use of tabu list. Efficiency of this method has been proven by applying traditional left functions and comparing the results to GA. It was also proved that the newly suggested algorithm is very effective to find the global optimum solution to minimize the weight for avoiding the resonance of fresh water tank that is placed in the after body area of ship. According to the study, GA's convergent speed in initial stages is improved by using RSM method. An optimized solution is calculated without the evaluation of additional actual objective function. In a summary, it is concluded that RHEA is a very powerful global optimization algorithm from the view point of convergent speed and global search ability.