• Title/Summary/Keyword: Hybrid Structures

Search Result 989, Processing Time 0.033 seconds

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

A Study on the Modular Design of Hybrid Lightweight Carbody Structures Made of Sandwich Composites and Aluminum Extrusion (샌드위치 복합재와 알루미늄 압출재를 적용한 하이브리드 경량 차체 구조물의 모듈화 설계 연구)

  • Jang, Hyung-Jin;Shin, Kwnag-Bok;Han, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2644-2649
    • /
    • 2011
  • The purpose of this study is to propose the modular design of hybrid lightweight carbody structures made of sandwich composites and aluminum extrusion. The sandwich composites were used for secondary structures to minimize the weight of carbody, and the aluminum extrusions were applied to primary structures to improve the stiffness of carbody and manufacturability. Key requirements were defined for the modular design of hybrid carbody, and the applied parts of sandwich composites were determined through the topology optimization analysis. Consequently, feasibility of enhancing mass saving and maintainability in modular hybrid carbody design were presented, comparing with the carbody structures made of aluminum extrusion or sandwich composites only.

  • PDF

The Characterization of ZnO Hybrid Structure Grown by Metal-organic Chemical Vapor Deposition

  • Kim, A-Yeong;Jang, Sam-Seok;Lee, Do-Han;Im, So-Yeong;Byeon, Dong-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • The growth of three-dimensional ZnO hybrid structures by metal-organic chemical vapor deposition was controlled through their growth pressure. Vertically aligned ZnO nanorods were grown on c-plane sapphire substrate at $600^{\circ}C$ and 400 Torr. ZnO film was then formed in-situ on the ZnO nanorods at $600^{\circ}C$ and 10 Torr. High-resolution X-ray diffraction and transmission electron microscopy measurements showed that the ZnO film on the nanorods/sapphire grew epitaxially, and that the ZnO film/nanorods hybrid structures had well-ordered wurtzite structures. The hybrid ZnO structure was shown to be about 5 ${\mu}m$ by field-emission scanning electron microscopy. The hybrid structure showed better crystalline quality than mono-layer film on sapphire substrate. Consequently, purpose of this work is developing high quality hybrid epi-growth technology using nano structure. These structures have potential applicability as nanobuilding blocks in nanodevices.

  • PDF

Inter-Chain Interactions in Arrays of Metal-Organic Hybrid Chains on Ag(111)

  • Park, Ji-Hun;Jeong, Gyeong-Hun;Yun, Jong-Geon;Kim, Ho-Won;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.302-302
    • /
    • 2011
  • Fabrications of metal-organic hybrid networks attracted much attention due to possible applications in gas storages, heterogeneous catalyses, information storages, and opto-electronic devices. One way to construct three-dimensional hybrid structures is to make the arrays of planar or linear metal-organic hybrid structures which are linked through electrostatic interactions. As a model study, we fabricated the arrays of one-dimensional hybrid chains and investigated inter-chain interactions between adjacent hybrid chains using scanning tunneling microscopy (STM) and spectroscopy (STS) on Ag(111). Brominated anthracene molecules were used to grow the arrays of hybrid chains on Ag(111). We proposed atomic models for the observed structures. Linear chains are made of repetition of Ag-anthracene units. Br atoms are attached to anthracene molecules through Br-H structures which mediate inter-chain interactions. Two different apparent heights were observed in anthracene molecules. Molecules having a Br-H connection look brighter than those with two connections due to electronic effect. When a chain is laterally manipulated with STM tip, Br atoms move together with the chain implying that Br-H inter-chain interactions are quite strong.

  • PDF

Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control

  • Makihara, Kanjuro
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.193-207
    • /
    • 2012
  • New insights into our previously proposed hybrid-type method for vibration control are highlighted in terms of energy analysis, such as the assessment of energy efficiency and system stability. The hybrid method improves the bang-bang active method by combining it with an energy-recycling approach. Its simple configuration and low energy-consumption property are quite suitable especially for isolated structures whose energy sources are strictly limited. The harmful influence of the external voltage is assessed, as well as its beneficial performance. We show a new chattering prevention approach that both harvests electrical energy from piezoelectric actuators and eliminates the displacement-offset of the equilibrium point of structures. The amount of energy consumption of the hybrid system is assessed qualitatively and is compared with other control systems. Experiments and numerical simulations conducted on a 10-bay truss can provide a thorough energy-efficiency evaluation of the hybrid suppression system having our energy-harvesting system.

Process Development of Metal-Composite Hybrid Structures (금속-복합재료 하이브리드 구조체 재활용 프로세스 개발)

  • Hwang, Hui-Yun;Roney, Md. Fardim Sufian;Xi, Zhu
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.167-173
    • /
    • 2021
  • Recently, metal-composite hybrid structures became a very attractive material system for various applications such as automobile and air vehicles due to their design flexibility as well as superior mechanical properties. On the other hand, recycling is a hot issue to reduce material wastes and environmental pollution, so that many countries made recycling regulations. But the recycling of metal-composite hybrid structures is not fully considered since the development and application are very early stage. We developed and optimized the recycling process for metal-composite hybrid structures based on the easy adaptation of the local recycling companies.

Seismic behavior of structures isolated with a hybrid system of rubber bearings

  • Chen, Bo-Jen;Tsai, C.S.;Chung, L.L.;Chiang, Tsu-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.761-783
    • /
    • 2006
  • The enlargement of interest in base isolators as an earthquake-proof design strategy has dramatically accelerated experimental studies of elastomeric bearings worldwide. In this paper, a new base isolator concept that is a hybrid system of rubber bearings is proposed. Uniaxial, biaxial, and triaxial shaking table tests are also performed to study the seismic behavior of a 0.4-scale three-story isolated steel structure in the National Center for Research on Earthquake Engineering in Taiwan. Experimental results demonstrate that structures with a hybrid system of rubber bearings composed of stirruped rubber bearings and laminated rubber bearings can actually decrease the seismic responses of the superstructure. It has been proved through the shaking table tests that the proposed hybrid system of rubber bearings is a very promising tool to enhance the seismic resistance of structures. Moreover, it is demonstrated that the proposed analytical model in this paper can predict the mechanical behavior of the hybrid system of rubber bearings and seismic responses of the base-isolated structures.

A Study on Building Structures and Processes for Intelligent Web Document Classification (지능적인 웹문서 분류를 위한 구조 및 프로세스 설계 연구)

  • Jang, Young-Cheol
    • Journal of Digital Convergence
    • /
    • v.6 no.4
    • /
    • pp.177-183
    • /
    • 2008
  • This paper aims to offer a solution based on intelligent document classification to create a user-centric information retrieval system allowing user-centric linguistic expression. So, structures expressing user intention and fine document classifying process using EBL, similarity, knowledge base, user intention, are proposed. To overcome the problem requiring huge and exact semantic information, a hybrid process is designed integrating keyword, thesaurus, probability and user intention information. User intention tree hierarchy is build and a method of extracting group intention between key words and user intentions is proposed. These structures and processes are implemented in HDCI(Hybrid Document Classification with Intention) system. HDCI consists of analyzing user intention and classifying web documents stages. Classifying stage is composed of knowledge base process, similarity process and hybrid coordinating process. With the help of user intention related structures and hybrid coordinating process, HDCI can efficiently categorize web documents in according to user's complex linguistic expression with small priori information.

  • PDF

Model updating with constrained unscented Kalman filter for hybrid testing

  • Wu, Bin;Wang, Tao
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1105-1129
    • /
    • 2014
  • The unscented Kalman filter (UKF) has been developed for nonlinear model parametric identification, and it assumes that the model parameters are symmetrically distributed about their mean values without any constrains. However, the parameters in many applications are confined within certain ranges to make sense physically. In this paper, a constrained unscented Kalman filter (CUKF) algorithm is proposed to improve accuracy of numerical substructure modeling in hybrid testing. During hybrid testing, the numerical models of numerical substructures which are assumed identical to the physical substructures are updated online with the CUKF approach based on the measurement data from physical substructures. The CUKF method adopts sigma points (i.e., sample points) projecting strategy, with which the positions and weights of sigma points violating constraints are modified. The effectiveness of the proposed hybrid testing method is verified by pure numerical simulation and real-time as well as slower hybrid tests with nonlinear specimens. The results show that the new method has better accuracy compared to conventional hybrid testing with fixed numerical model and hybrid testing based on model updating with UKF.

A Comparative Analysis of Dynamic Instability Characteristic of Geiger-Typed Cable Dome Structures by Load Condition (Geiger형 케이블 돔 구조물의 외력에 따른 동적 불안정 특성 비교분석)

  • Kim, Seung-Deog;Sin, In-A
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • The purpose of this paper is to study comparative of dynamic instability characteristic of Geiger-typed cable dome structures by load condition, which is well-known among the cable dome structures that are the lightweight hybrid structure using compression and tension element continuously. Dynamic buckling process in the phase plane is very important thing for understanding why unstable phenomena are sensitively originated in nonlinear dynamic by various initial conditions. But there is no paper for the dynamic instability of hybrid cable dome by Sinusoidal Excitations, many papers which deal with the dynamic instability for shell-structures under the step load have been published. As a result of Geiger-typed cable dome, which shows chaotic behavior in dynamic nonlinear analysis with initial imperfection.