• Title/Summary/Keyword: Hybrid SFCL

Search Result 33, Processing Time 0.022 seconds

Operating Characteristics of Hybrid Type Superconducting Fault Current Limiter (하이브리드형 초전도 한류기의 동작 특성)

  • Cho, Yong-Sun;Nam, Gueng-Hyun;Lim, Sung-Hun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.255-258
    • /
    • 2006
  • We investigated the operating characteristics of the hybrid-type superconducting fault current limiter (SFCL) according to the inductance of secondary windings. The hybrid type SFCL consists of a transformer that has a primary winding and a secondary winding with serially connected $YBa_2Cu_3O_7$ (YBCO) films. The resistive-type SFCL has difficulty when it comes to raising the capacity of the SFCL due to slight differences of critical current densities between units and structure of the SFCL. The hybrid-type SFCL with closed-loop is able to achieve capacity increase through the electrical isolation and reduction of the inductance of the secondary winding with a superconducting element of the same critical current. On the other hand, the current limiting characteristics were nearly identical in the hybrid-type SFCL with open-loop compared to closed-loop, but quench time was longer than the hybrid-type SFCL with closed-loop. We confirmed that the capacity of the SFCL was increased effectively by the reduced inductance of the secondary winding. In addition, the power burden of the system also could be lowered by reducing the inductance of secondary winding.

Comparative Study of Current Limiting Characteristics for Hybrid Type and Flux-Lock Type SFCLs

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.222-225
    • /
    • 2007
  • In this paper, we compared the current limiting characteristics of both the hybrid type and the flux-lock type superconducting fault current limiters(SFCLs), which have a magnetic coupling structure between a primary winding and several secondary windings. The limiting impedances of two SFCLs were derived from each equivalent circuit considering the design parameters of SFCL such as the self-inductance of secondary winding and the resistance of $high-T_C$ superconducting(HTSC) element. Through the comparison for the limiting impedances of two SFCLs considering the dependence of the HTSC element's resistance on the applying voltage into the SFCL, the hybrid type SFCL was confirmed to have larger limiting impedance with smaller resistance of HTSC element than the flux-lock type SFCL. It was expected from the analysis that the hybrid type SFCL was more advantageous than the flux-lock type SFCL from the viewpoint of the fault current limiting level.

Analysis on the Protective Coordination with Hybrid Superconducting Fault Current Limiter (반주기 이후 동작 하이브리드 초전도 전류제한기와 보호기기 협조 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1832-1837
    • /
    • 2011
  • The fault current has increased due to the large power demand in power distribution system and network distribution system. To protect the power system effectively from the increased fault current, the superconducting fault current limiter (SFCL) has been notified. However, the conventional SFCL has some problems such as cost, operation, recovery, loss. To solve some problems, the hybrid superconducting fault current limiter using the fast switch was proposed. However, hybrid SFCL also has a problem that is protection coordination in power distribution system with hybrid SFCL. In this paper, the fault current limiting characteristics of hybrid SFCL with first half cycle non-limiting operation according to the fault angle, the resistance of superconducting element, and the magnitude of Current Limit Resistor (CLR) which are the components of hybrid SFCL were analyzed through the experiments.

Analysis on Current Limiting Characteristics of a Hybrid SFCL with the First Half Cycle Limiting Operation Due to Resistance of Superconducting Element (초전도소자의 저항변화에 따른 반주기내 한류형 하이브리드 초전도 전류제한기의 전류제한 특성 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1817-1822
    • /
    • 2011
  • The fault current has been increasing due to expansive substation facilities for meeting the increase of demand. To limit increasing fault current in a power system, among methods the superconducting fault current limiter (SFCL) has been considered to be adopted in the power grid. However, in case of adopting SFCL in the power system, most of SFCLs need to solve problems such as recovery, cost. With efforts to solve those problems, the novel fault current limiting device which is called hybrid SFCL is developed. To apply the hybrid SFCL, it has to be needed to analyze application possibility and itself operation characteristics. In this paper, the fault current limiting and operation characteristics of hybrid SFCL with first half cycle the limiting operation in case of various resistances of superconducting element were analyzed through experiment.

Development of an analysis model for the first half cycle non-limiting type Hybrid SFCL (22.9kV 반주기후한류방식 복합형 초전도한류기 해석모델 개발)

  • Lee, Seung-Ryul;Yoon, Jae-Young;Lee, Byong-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • For real power system application of SFCL, it is necessary to develop an analysis model of the SFCL. In Korea, hybrid SFCL of the first half cycle non-limiting type have been jointly developed by KEPRI and LS Industrial Systems through DAPAS program. In this study, we developed a PSCAD/EMTDC analysis model of the hybrid SFCL of the first half cycle non-limiting type. The simulation results of the developed model are in agreement with the test results of the real SFCL. The developed SFCL model is tested in real power system model.

Comparative Analysis on Current Limiting Characteristics of Hybrid Superconducting Fault Current Limiters (SFCLs) with First Half Cycle Limiting and Non-Limiting Operations

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.659-663
    • /
    • 2012
  • The application of large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer's impedance caused the short-circuit current of the power distribution system to be increase thus, the higher short-circuit current exceeded the cut-off ratings of the protective devices such as circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. In spite of excellent current limiting performances of the SFCL, on the other hand, the efforts to apply the SFCL into power system has been delayed due to both the limited spaces for the SFCL's installation and its long recovery time after the fault removal. In order to solve these problems, a hybrid SFCL, which can perform either first half cycle limiting of first half cycle non-limiting operation, has been developed by corporation of LSIS (LS Industrial System) and KEPCO (Korea Electric Power Corporation). In this paper, we tried to requirements hybrid SFCL by PSCAD/EMTDC. Simulation results of our analysis of the hybrid SFCL is that its accompanied the characteristics both the limit the fault current and quick recovery caused by the less impact from superconductor.

Analysis on Operation Characteristics of Hybrid Superconductor Fault Current Limiter(SFCL) with First Half Cycle Non-Limiting Operation (반주기 이후 하이브리드 초전도 전류제한기의 동작 특성 분석)

  • You, Il-Kyoung;Kim, Jin-Seok;Kim, Myoung-Hoo;Lim, Sung-Hun;Kim, Jae-Chul;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.239-244
    • /
    • 2011
  • Due to large demand, the increase of fault current has caused the capacity of power machines in power grid to increase. Among several countermeasures, the superconducting fault current limiter (SFCL) has been noticed as one of the promising countermeasures to solve these problems. However, in spite of excellent current limiting performances of the SFCL, the application of SFCL to power system has been delayed due to both the limited space for the SFCL's installation and its longer recovery time after the fault removal. In order to solve these problems, a hybrid type SFCL was developed. In this paper, we studied the operation characteristics of the hybrid SFCL with first half cycle non-limiting operation by modelling using PSCAD/EMTDC and experiment. It was shown through the simulation using PSCAD/EMTDC and the simulated experiment that the fault current limiting and the fast recovery operations of the hybrid SFCL with the first half cycle non-limiting operation were achieved.

Characteristics of Hybrid-Type SFCL according to the Parallel Connection of Secondary Windings (2차권선의 병렬연결에 따른 하이브리드형 초전도 한류기의 특성)

  • Hwang, Jong-Sun;Cho, Yong-Sun;Choi, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.208-211
    • /
    • 2006
  • We have analyzed operating characteristics of hybrid-type superconducting fault current limiter (SFCL) according to the parallel connection of secondary windings with $YBa_{2}Cu_{3}O_{7}$ (YBCO) films. The turn ratio between the primary and secondary windings of each reactor was 63:21. Hybrid-type SFCL using a transformer with parallel reactors could reduce the unbalanced quench caused by differences of the critical current density between YBCO films. We found that hybrid-type SFCL having parallel connection induced simultaneous quench between the superconducting elements. The quench-starting point at this time was almost same. When the applied voltage was 200V, the limiting current in the hybrid-type SFCL with a serial connection was lowered to 34 percent than that in the SFCL with a parallel connection. In the meantime, when the voltage generated in the superconducting elements was the same, the current value in the parallel connection was 60 percent less than in the serial connection. The voltage generated in the primary winding also showed the similar behavior. In conclusion, we found that the fault current was limited more effectively in the SFCL with the serial connection but the power burden of the superconducting elements was reduced in the parallel connection.

  • PDF

Domestic Efforts for SFCL Application and Hybrid SFCL (국내 초전도 한류기 요구와 하이브리드 초전도 한류기)

  • Hyun, O.B.;Kim, H.R.;Yim, Y.S.;Sim, J.;Park, K.B.;Oh, I.S.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

  • Nam, Seokho;Lee, Woo Seung;Lee, Jiho;Hwang, Young Jin;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.26-29
    • /
    • 2013
  • Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.