• Title/Summary/Keyword: Hybrid PI controller

Search Result 58, Processing Time 0.031 seconds

Fuzzy-PI Hybrid Control of AC Servomotor Systems with Load Variance (부하 변동이 있는 AC 서보 모터 시스템의 퍼지-PI 하이브리드 제어)

  • Wang, Bo-Hyeun;Lee, Hak-Sung;Koo, Keun-Mo;Cho, Hyun-Joon;Chung, Kang-Ik;Ryoo, Jong-Seock
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.962-966
    • /
    • 1996
  • A conventional PI controller does not provide a proper response in face of various kinds of load variation. In this paper, three types of fuzzy-PI hybrid control scheme are proposed in order to improve the performance of the PI controller. The proposed control schemes are applied to the speed controller of AC servo motor systems. The effectiveness of the proposed methods is shown by computer simulation and the advantage of each control scheme is discussed.

  • PDF

HBPI Controller of Induction Motor using Fuzzy Adaptive Mechanism (퍼지 적응 메카니즘을 이용한 유도전동기의 HBPI 제어기)

  • Nam Su-Myung;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.395-401
    • /
    • 2005
  • This paper presents Hybrid PI(HBPI) controller of induction motor drive using fuzzy control. In general, PI controllers used in computer numerically controlled machines process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, HBPI controller proposes a new method based self tuning PI controller. HBPI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gam tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Optimal Design for Hybrid Active Power Filter Using Particle Swarm Optimization

  • Alloui, Nada;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.129-135
    • /
    • 2017
  • This paper introduces a design and a simulation of a hybrid active power filter (HAPF) for harmonics reduction given an ideal supply source. The synchronous reference frame method has been used here to identify the reference currents. The proposed HAPF uses a new artificial- intelligence technique called Particle Swarm Optimization (PSO) for tuning the parameters of a proportional and integral controller called PI-PSO. The PI-PSO controller is used to archive optimality for the DC-link voltage of the HAPF-inverter. The hysteresis non-linear current control method is used in this approach to compare the extracted reference and the actual currents in order to generate the pulse gate required for the HAPF. Results obtained by simulations with Matlab/Simuling show that the proposed approach is very flexible and effective for eliminating harmonic currents generated by the non-linear load with the HAPF based PSO tuning.

Hybrid Fuzzy PI-Control Scheme for Quasi Multi-Pulse Interline Power Flow Controllers Including the P-Q Decoupling Feature

  • Vural, Ahmet Mete;Bayindir, Kamil Cagatay
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.787-799
    • /
    • 2012
  • Real and reactive power flows on a transmission line interact inherently. This situation degrades power flow controller performance when independent real and reactive power flow regulation is required. In this study, a quasi multi-pulse interline power flow controller (IPFC), consisting of eight six-pulse voltage source converters (VSC) switched at the fundamental frequency is proposed to control real and reactive power flows dynamically on a transmission line in response to a sequence of set-point changes formed by unit-step reference values. It is shown that the proposed hybrid fuzzy-PI commanded IPFC shows better decoupling performance than the parameter optimized PI controllers with analytically calculated feed-forward gains for decoupling. Comparative simulation studies are carried out on a 4-machine 4-bus test power system through a number of case studies. While only the fuzzy inference of the proposed control scheme has been modeled in MATLAB, the power system, converter power circuit, control and calculation blocks have been simulated in PSCAD/EMTDC by interfacing these two packages on-line.

High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller (HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.33-40
    • /
    • 2009
  • This paper presents the high performance control of interior permanent magnet synchronous motor(IPMSM) using space vector(SV) PWM method based on hybrid artificial intelligent(HAI) controller. The HAI controller combines the advantages between adaptive fuzzy control and neural network The SV PWM method is applied to a speed control system of motor in the industry field until now and is feasible to improve harmonic rate of output current, switching frequency and response characteristics. This HAI controller is used instead of conventional PI controller in order to solve problems happening when calculating a reference voltage. The HAI controller improves speed performance by hybrid combination of reference model-based adaptive mechanism method, fuzzy control and neural network. This paper analyzes response characteristics of parameter variation, steady-state and transient-state using proposed HAI controller and this controller compares with conventional fuzzy neural network(FNN) and PI controller. Also, this paper proves validity of HAI controller.

Design and Analysis of PI-IP Hybrid Controller of Interlinking Converter for DC Bus Voltage control in DC Microgrid (DC 마이크로그리드의 DC 버스 전압제어를 위한 Interlinking 컨버터의 PI-IP 혼합제어기 설계 및 분석)

  • Kim, Tae-Gyu;Lee, Hoon;Choi, Bong-Yeong;Kang, Kyung-Min;Kim, Mina;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.144-145
    • /
    • 2019
  • This paper proposes a design and analysis for a PI-IP hybrid voltage controller with a combination of PI and IP voltage controller for stable voltage control of DC bus voltage, Transient characteristic of DC bus voltage is improved by designed setting variable value and control method in the variable load and power generation conditions.

  • PDF

Controller Transition Management of Hybrid Position Control System for Unmanned Expedition Vehicles (무인탐사차량의 위치제어를 위한 복합제어 시스템의 제어기 전이관리)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.969-976
    • /
    • 2008
  • A position control problem is studied for UEV(Unmanned Expedition Vehicles), which is to follow pre-determined paths via fixed way-points. Hybrid control systems are used for position control of UEV depending on the operating condition. Speed control consists of three controllers: PID control, adaptive PI control, and neural network. Heading control consists of two controllers, PID and adaptive PID control. The controllers are selected based on the changes of road conditions. We suggest an adaptive PI control algorithm for speed control and an transition management algorithm among the controllers. The algorithm adapts the road conditions and variation of vehicle dynamical characteristics and selects a suitable controller.

Design of a Hybrid Controller for the Three-phase Four-leg Voltage-source Inverter with Unbalanced Load

  • Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.181-189
    • /
    • 2017
  • The three-phase four-leg voltage-source inverter topology is an interesting option for the three-phase four-wire system. With an additional leg, this topology can achieve superior performance under unbalanced and nonlinear load conditions. However, because of the low bandwidth of conventional controllers in high-power inverter applications, the system cannot guarantee a balanced output voltage under the unbalanced load condition. Most of the methods proposed to solve this problem mainly use the multiple synchronous frame method, which requires several controllers and a large amount of computation because of frame transformation. This study proposes a simple hybrid controller that combines proportional-integral (PI) and resonant controllers in the synchronous frame synchronized with the positive-sequence component of the output voltage of the three-phase four-leg inverter. The design procedure for the controller and the theoretical analysis are presented. The performance of the proposed method is verified by the experimental results and compared with that of the conventional PI controller.

Control and Operation of Hybrid Microsource System Using Advanced Fuzzy- Robust Controller

  • Hong, Won-Pyo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.29-40
    • /
    • 2009
  • This paper proposes a modeling and controller design approach for a hybrid wind power generation system that considers a fixed wind-turbine and a dump load. Since operating conditions are kept changing, it is challenge to design a control for reliable operation of the overall system To consider variable operating conditions, Takagi-Sugeno (TS) fuzzy model is taken into account to represent time-varying system by expressing the local dynamics of a nonlinear system through sub-systems, partitioned by linguistic rules. Also, each fuzzy model has uncertainty. Thus, in this paper, a modem nonlinear control design technique, the sliding mode nonlinear control design, is utilized for robust control mechanism In the simulation study, the proposed controller is compared with a proportional-integral (PI) controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-hybrid power generation system.

Design of Parallel Type Fuzzy Controller Using Model Reference Fuzzy Algorithm (모델참조 퍼지 알고리즘을 이용한 병렬형 퍼지제어기 설계)

  • 추연규;김병철;이광석;김현덕
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.888-892
    • /
    • 2002
  • In this paper, parallel type fuzzy controller is designed by using a hybrid connected type fuzzy-PID controller and a model reference fuzzy controller. The first controller that consists a fuzzy-PI and a fuzzy-PD making a hybrid type fuzzy-PID controller plays a role as firstly reaching stable responses and secondly overcoming disturbance in plants. The second controller, model reference fuzzy controller, plays a role as reaching faster responses than other controllers. We have confirmed that we get rapid and stable responses and the controller overcomes disturbance in a short time when there happens disturbance by using parallel type fuzzy controller applying to DC motor in this paper.

  • PDF