• Title/Summary/Keyword: Hybrid Operation

Search Result 805, Processing Time 0.026 seconds

Staged Repair after Hybrid Palliation for Interrupted Aortic Arch with Systemic Outflow Tract Obstruction

  • Lee, June;Kim, Yong Han;Lee, Cheul
    • Journal of Chest Surgery
    • /
    • v.52 no.1
    • /
    • pp.32-35
    • /
    • 2019
  • Surgical management of interrupted aortic arch (IAA) with systemic outflow tract obstruction is clearly a challenge. If both ventricles are adequate, the Yasui operation is a useful option. Otherwise, a staged approach through initial hybrid palliation and delayed biventricular repair, tailored to the degree of obstructed outflow, serves to avoid a high-risk neonatal procedure. Herein, we present a patient with IAA and severe systemic outflow tract obstruction whose treatment involved hybrid palliation, followed by a Yasui operation.

Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery (연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발)

  • Oh, Seung-Taek;Kim, Byung-Ki;Park, Jae-Beom;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3391-3398
    • /
    • 2015
  • Recently, the large scaled lead-acid battery is widely introduced to efficient operation of the photovoltaic system in many islands. but the demand of lithium-ion battery is getting increased by the operation of wind power and replacement of the lead-acid battery. And also, under the renewable portfolio standard(RPS) and energy efficiency resource standard(EERS) policy of Korea government, the introduction of energy storage system(ESS) has been actively increased. Therefore, this paper presents the operation algorithm of hybrid battery management system(BMS) using the lead-acid and lithium-ion batteries, in order to maximize advantage of each battery. In other words, this paper proposed the algorithm of state of charge(SOC) and hybrid operation algorithm to calculate the optimal composition rate considering the fixed cost and operation cost of each battery. From the simulation results, it is confirmed that the proposed algorithms are an effective tool to evaluate SOC and to optimally operate hybrid ESS.

A Study on Hybrid Median Filter Using Gray Scale Morphology (Gray Scale Morphology를 이용한 하이브리드 메디안 필터에 관한 연구)

  • 문성용;김종교
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1264-1270
    • /
    • 1992
  • MF(Morphological filter) is generally composed of several morphological operation, which are the diverse structuring element. The two basic operation are erosion and dilation. The two other operation, opening and closing, are defined based on these two operation. Performance of open-closing(OC) is better exellent than close-opening(CO) to reduce noise of image data with Gaussian noise. In this paper, to use the hybrid median filter in processing the image, is shown that hybrid median filter has better results image quality than other filters, to analyze by computer simulation.

  • PDF

INCORPORATING CONTEXT LEVEL VARIABLES TO IMPROVE OPERATION ANALYSIS IN STEEL FABRICATION SHOPS

  • Amin Alvanchi;SangHyun Lee;Simaan M. AbouRizk
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1053-1059
    • /
    • 2009
  • Construction system modeling can enhance work performance by following the behaviors of a system. System behaviors may originate from physical aspects of a system, namely operation level variables, or from non-physical aspects of a system known as context level variables. However, construction system modelers usually focus on only one type of system variable (i.e., operation level or context level) which can lead to less accurate results. Hybrid modeling with System Dynamics (SD) and Discrete Event Simulation (DES) is one of the approaches that has been utilized to address this issue. In this research, an SD-DES hybrid model of a steel fabrication shop is developed, and the benefits of capturing context level variables together with operation level variables in the model are discussed.

  • PDF

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device (지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구)

  • Kim, Hwidong;Baek, Namchoon;Lee, Jinkook;Shin, Uchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF

Operation Scheme to Regulate the Active Power Output and to Improve the Forecasting of Output Range in Wind Turbine and Fuel-Cell Hybrid System (출력변동 저감 및 출력범위 예측 향상을 위한 풍력-연료전지 하이브리드 시스템의 운영방법)

  • Kim, Yun-Seong;Moon, Dae-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.531-538
    • /
    • 2009
  • The paper deals with an operation scheme to improve the forecasting of output range and to regulate the active power output of the hybrid system consisting of a doubly fed induction generator (DFIG) and a fuel-cell. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. The power fluctuation of a DFIG makes its operation difficult when a DFIG is connected to grid. A fuel cell system can be individually operated and adjusted output power, hence the wind turbine and fuel cell hybrid system can overcome power fluctuation by using a fuel-cell power control. In this paper, a fuel-cell is performed to regulate the active power output in comparison with the regulated active power output of a DFIG. And it also improves the forecasting of output range. Based on PSCAD/EMTDC tools, a DFIG and a proton exchange membrane fuel cell(PEMFC) is simulated and the dynamics of the output power in hybrid system are investigated.

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

Performance Characteristics of a Hybrid Air-Conditioner for Telecommunication Equipment Rooms (통신기지국용 하이브리드 냉방기의 성능특성 연구)

  • Kim, Yong-Chan;Choi, Jong-Min;Kang, Hoon;Yoon, Joon-Sang;Kim, Young-Bae;Choi, Kwang-Min;Lee, Ho-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.874-880
    • /
    • 2006
  • The power density and heat dissipation rate per unit area of the telecommunication equipment have been increased with the technology development in the footprint of telecommunication hardware. A proper heat dissipation method from the PCB module is very important to allow reliable operation of its electronic component. In this study, a hybrid air-conditioner for the telecommunication equipment room was designed to save energy and obtain system reliability. For high outdoor temperatures, the hybrid system operates in the vapor compression cycle, while, for low outdoor temperatures, the hybrid system works in the secondary fluid cooling cycle with no operation of the compressor. The performance of the hybrid air-conditioner was measured by varying outdoor and indoor temperatures. The hybrid air-conditioner yielded 50% energy saving compared with the conventional refrigeration system when the mode switch temperature was $8.3^{\circ}C$.