• Title/Summary/Keyword: Hybrid Modeling

Search Result 652, Processing Time 0.027 seconds

A Study on the Modeling of Ship Energy System Using Bond Graph (Bond Graph를 이용한 선박 에너지 시스템 모델링 연구)

  • Sang-Won Moon;Won-Sun Ruy
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.19-28
    • /
    • 2024
  • Environmental regulations are becoming more stringent in response to climate change, especially concerning marine pollution caused by ship emissions. Large ships are adjusting by integrating technologies to reduce pollutant emissions and transitioning to eco-friendly fuels such as low-sulfur oil and LNG. However, small ships face space constraints for installing LNG propulsion systems and the risk of power depletion with pure electric propulsion. Consequently, there's growing interest in researching hybrid propulsion methods that combine electricity and diesel for smaller vessels. Hybrid propulsion systems utilize diverse energy sources, requiring an effective method for evaluating their efficiency. This study proposes employing Bond graph modeling to comprehensively analyze energy dynamics within hybrid propulsion systems, facilitating better understanding and optimization of their efficiency. Modeling of the ship's energy system using Bond graphs will be able to provide a framework for integrating various energy sources and evaluating their effects.

Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm

  • Park, Ho-Seung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.289-300
    • /
    • 2003
  • In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy Neural Networks (FRFNN) through a hybrid identification algorithm. The proposed FRFNN modeling implement system structure and parameter identification in the efficient form of "If...., then... " statements, and exploit the theory of system optimization and fuzzy rules. The FRFNN modeling and identification environment realizes parameter identification through a synergistic usage of genetic optimization and complex search method. The hybrid identification algorithm is carried out by combining both genetic optimization and the improved complex method in order to guarantee both global optimization and local convergence. An aggregate objective function with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. The proposed model is experimented with using two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other models.er models.

New Learning Hybrid Model for Room Impulse Response Functions (새로운 학습 하이브리드 실내 충격 응답 모델)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.23-27
    • /
    • 2007
  • Many trials have been used to model room impulse responses, all attempting to provide efficient representations of room acoustics. The traditional model designs for room impulse response seem to fail in accuracy, controllability, or computational efficiency. In time domain, a room impulse response is generally considered as the combination of three parts having different acoustic characteristics, initial time delay, early reflection, and late reverberation. This paper introduces new learning hybrid model for the room impulse response. In this proposed model, those three parts are modeled using different models with learning algorithms that determine the length or boundary of each model in the hybrid model. By the simulation with measured room impulse responses, it was examined that the performance of proposed model shows the best efficiency in views of both the parameter numbers and modeling error.

  • PDF

Hybrid Systems Modeling and Simulation - Part II: Interoperable Simulation Environment (하이브리드 시스템 모델링 및 시뮬레이션 - 제2부: 시뮬레이터 연동 환경)

  • 임성용;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.15-30
    • /
    • 2001
  • Hybrid simulation may employ different types of simulation based on which models in different system types are developed. The simulation requires simulation time synchronization and data exchange between such simulators, which is called simulators interoperation. This paper develops such interoperable simulation environments for modeling and simulation of hybrid systems whose components consist of continuous and discrete event systems. The environments, one for centerized and the other for distribute, support interoperation between a discrete event simulator of DEVSim++ and a continuous simulator of MATLAB. The centerized environment, HDEVSim++, is developed by extending the sxisting DEVSim++ environment; the distributed environment, HDEVSimHLA, is developed using the HLA/RTl library. Verification of both environments is made and performance comparison between the two using a simple example is presented. .

  • PDF

State of Charge Estimator using Sliding Mode Observer for Hybrid Electric Vehicle Lithium Battery (슬라이딩모드 관측기를 이용한 하이브리드 자동차용 리튬배터리 충전량 예측방법)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.324-331
    • /
    • 2007
  • This paper studies new estimation method for state of charge (SOC) of the hybrid electric vehicle lithium battery using sliding mode observer. A simple R-C Lithium battery modeling technique is established and the errors caused by simple modeling was compensated by the sliding mode observer. The structure of the sliding mode observer is simple, but it shows robust control property against modeling errors and uncertainties. The performance of the system has been verified by the UUDS test. The test results of the proposed observer system shows robust tracking performance under real driving environments.

Multi-agent Control for Wind Hybrid Power Systems (풍력 복합발전 시스템을 위한 멀티에이전트 제어)

  • Kang, Seung-Jin;Ko, Hee-Sang;Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7451-7458
    • /
    • 2014
  • In this paper, the system modeling and multi-agent control algorithm in isolated wind hybrid power systems are proposed. The multi-agent control is a new type of the hybrid control method that is made up of wind turbine, diesel generator, battery, and dumpload. Fourteen different modes of operations of the wind hybrid power system are performed by wind speed changes and the SOC of battery. Simulation results show that the efficient operations under various wind variations in isolated wind hybrid power systems can be obtained using proposed algorithms.

Development of Finite Element Model of Hybrid III 5th Percentile Female Dummy (Hybrid III 5% 성인 여성 더미의 유한요소 모델 개발)

  • Yi, Sang-Il;Mohan, Pradeep K.;Kan, Cing-Dao Steve;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.18-30
    • /
    • 2010
  • As the automobile industry is developing, the number of deaths and injuries has increased. To reduce the damages from automobile accidents, the government of each country proposes experimental conditions for reproducing the accident and establishes the vehicle safety regulations. Automotive manufacturers are trying to make safer vehicles by satisfying the requirements. The Hybrid III crash test dummy is a standard Anthropomorphic Test Device (ATD) used for measuring the occupant's injuries in a frontal impact test. Since a real crash test using a vehicle is fairly expensive, a computer simulation using the Finite Element Method (F.E.M.) is widely used. Therefore, a detailed and robust F.E. dummy model is needed to acquire more accurate occupant injury data and behavior during the crash test. To achieve this goal, a detailed F.E. model of the Hybrid III 5th percentile female dummy is constructed by using the reverse engineering technique in this research. A modeling process is proposed to construct the F.E. model. The proposed modeling process starts from disassembling the physical dummy. Computer Aided Design (CAD) geometry data is constructed by three-dimensional (3-D) scanning of the disassembled physical dummy model. Based on the geometry data, finite elements of each part are generated. After mesh generation, each part is assembled with other parts using the joints and rigid connection elements. The developed F.E. model of dummy is simulated based on the FMVSS 572 validation regulations. The results of simulation are compared with the results of physical tests.

Radial Basis Hybrid Neural Network Modeling for On-line Detection of Machine Condition Change (기계상태의 변화를 온라인으로 탐지하기 위한 Radial Basis 하이브리드 뉴럴네트워크 모델링)

  • Wang, Gi-Nam;Kim, Gwang-Sub;Jeong, Yoon-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.4
    • /
    • pp.113-134
    • /
    • 1994
  • A radial basis hybrid neural network (RHNN) is presented for an on-line detection of machine condition change. Two-phase modeling by RHNN is designed for describing a machine condition process and for predicting future signal. A moving block procedure is also designed for detecting a process change. A fast on-line learning algorithm, the recursive least square estimation, is introduced. Experimental results showed the RHNN could be utilized efficiently for on-line machine condition monitoring.

  • PDF

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • 김나은;현상학;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.