• Title/Summary/Keyword: Hybrid Mobile Robot

Search Result 68, Processing Time 0.03 seconds

A Design of a Simplified Hybrid Navigation System for a Mobile Robot by Using Kalman Filter (칼만 필터를 이용한 이동 로봇의 간이 복합 항법 시스템 설계)

  • Bae, Seol B.;Kim, Min J.;Shin, Dong H.;Kwon, Soon T.;Baek, Woon-Kyung;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.299-305
    • /
    • 2014
  • In this paper, a simple version of the hybrid navigation system using Kalman filter is proposed. The implemented hybrid navigation system is composed of a GPS to measure the position and the velocity, and a IMU(inertial measurement unit) to measure the acceleration and the posture of a mobile robot. A discrete Kalman filter is applied to provide the position of the robot by fusing both of the sensor data. When GPS signal is available, the navigation system estimates the position of the robot from the Kalman filter using position and velocity from GPS, and acceleration from IMU. During the interval until next GPS signal arrives, the system calculates the position of the robot using acceleration from IMU and velocity obtained at the previous step. Performance of the navigation system is verified by comparing the real path and the estimated path of the mobile robot. From experiments, we conclude that the navigation system is acceptable for the mobile robot.

Implementation of Hybrid System Controller for High-Speed Indoor Navigation of Mobile Robot System Using the Ultra-Sonic Sensors (초음파 센서를 이용한 이동 로봇 시스템의 고속 실내 주행을 위한 하이브리드 시스템 제어기의 구현)

  • Im, Mi-Seop;Im, Jun-Hong;O, Sang-Rok;Yu, Beom-Jae;Yun, In-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.774-782
    • /
    • 2001
  • In this paper, we propose a new approach to the autonomous and high-speed indoor navigation of wheeled mobile robots using hybrid system controller. The hierarchical structure of hybrid system presented consists of high-level reasoning process and the low-level motion control process and the environmental interaction. In a discrete event system, the discrete states are defined by the user-defined constraints and the reference motion commands are specified in the abstracted motions. The hybrid control system applied for the nonholonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoidance in the indoor navigation problem. For the evaluation of the proposed algorithm, the algorithm is implemented to the two-wheel driven mobile robot system. The experimental results show that the hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Path Control of a Mobile Robot Using Fuzzy-Neural Hybrid System (퍼지.신경회로망을 이용한 자율주행 로봇의 경로제어)

  • Lee, B.R.;Lee, W.K.;Yi, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.19-26
    • /
    • 1995
  • In this paper, a fuzzy-neural hybrid control approach is proposed for controlling a mobile robot that can avoid an unexpected obstacle in a navigational space. First, to describe the global structure of a known environment, a heuristic collision-free space band is introduced. Based on the band, the moving information in the known environment is trained to a neural controller. Then, during the execution of a mobile robot navigation moving information at each position is given the neural controller. If the mobile robot encounters an unexpected obstacle, a fuzzy controller activates to avoid the unexpected obstacle. Finally, some numerical examples are presented to demonstrate the control algorithm.

  • PDF

Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform (휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발)

  • Kim, Yoon-Gu;An, Jin-Ung;Kwak, Jeong-Hwan;Moon, Jeon-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

Wheel &Track Hybrid Mobile Robot Platform and Mechanism for Optimal Navigation in Urban Terrain (도심지형 최적주행을 위한 휠.무한궤도 하이브리드형 모바일 로봇 플랫폼 및 메커니즘)

  • Kim, Yoon-Gu;Kim, Jin-Wook;Kwak, Jeong-Hwan;Hong, Dae-Han;Lee, Ki-Dong;An, Jin-Ung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2010
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for the purpose of surveillance, reconnaissance, search and rescue, and etc. We have considered a terrain adaptive hybrid robot platform which is equipped with rapid navigation on flat floors and good performance on overcoming stairs or obstacles. Since our special consideration is posed to its flexibility for real application, we devised a design of a transformable robot structure which consists of an ordinary wheeled structure to navigate fast on flat floor and a variable tracked structure to climb stairs effectively. Especially, track arms installed in front side, rear side, and mid side are used for navigation mode transition between flatland navigation and stairs climbing. The mode transition is determined and implemented by adaptive driving mode control of mobile robot. The wheel and track hybrid mobile platform apparatus applied off-road driving mechanism for various professional service robots is verified through experiments for navigation performance in real and test-bed environment.

Fast Path Planning Algorithm for Mobile Robot Navigation (모바일 로봇의 네비게이션을 위한 빠른 경로 생성 알고리즘)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Mobile robots use an environment map of its workspace to complete the surveillance task. However grid-based maps that are commonly used map format for mobile robot navigation use a large size of memory for accurate representation of environment. In this reason, grid-based maps are not suitable for path planning of mobile robots using embedded board. In this paper, we present the path planning algorithm that produce a secure path rapidly. The proposed approach utilizes a hybrid map that uses less memory than grid map and has same efficiency of a topological map. Experimental results show that the fast path planning uses only 1.5% of the time that a grid map based path planning requires. And the results show a secure path for mobile robot.

Mobile Robot Exploration in Unknown Environment using Hybrid Map (미지의 환경에서 하이브리드 맵을 활용하는 모바일 로봇의 탐색)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.27-34
    • /
    • 2013
  • Mobile robot has the exploration function in order to perform its own task. Robot exploration can be used in many applications such as surveillance, rescue and resource detection. The workspace that robots performed in was complicated or quite wide, the multi search using the several mobile robots was mainly used. In this paper, we proposed a scheme that all areas are searched for by using one robot. The method to be proposed extract a area that can be explored in the workspace then the robot investigates the area and updates the map at the same time. The explored area is saved as a hybrid map that combines the nice attributes of the grid and topological maps. The robot can produce the safe navigation route without the obstacles by using hybrid map. The proposed hybrid map uses less memory than a grid map, but it can be used for complete coverage with the same efficiency of a topological map. Experimental results show that the proposed scheme can generate a map of an environment with only 6% of the memory that a grid map requires.

Sequencing Strategy for Autonomous Mobile Robots in Real Environments (이동로봇 자율주행을 위한 행위모듈의 실행순서 조정기법)

  • 송인섭;박정민;오상록;조영조;박귀태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.297-305
    • /
    • 1999
  • Autonomous mobile robots are required to achieve multiple goals while responding quickly to the dynamic environments. An appropriate robot control architecture, which clearly and systematically defines the relationship among the inputs, the processing functions and the outputs, thus needs to be embedded in the robot controller. This paper proposes a kind of hybrid control architecture which combines the key features of the two well-known robot control architectures; hierarchical and behavioral- based. The overall control architecture consists of three layers, i.e. the highest planner, the middle plan executor, and the lowest monitor and behavior-based controller. In the planned situation, only one behavior module is chosen by the logical coordinator in the plan executor according to the way point bin. In the exceptional situation, the central controller in the plan executor issues an additional control command to reach the planned way point. Several simulations and experiments with autonomous mobile robot show that the proposed architecture enables the robot controller to achieve the multiple sequential goals even in dynamic and uncertain environments.

  • PDF

Hybrid Tension/Mobile Control of working Robot for installed Troy Cable (트로이선 가설 작업 로봇의 장력 및 이동 제어에 관한 연구)

  • Hong, Jeng-Pyo;Won, Tae-Hyun;Kim, Mun-Soo;Hong, Soon-Ill
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.455-457
    • /
    • 2007
  • The objective of this study is development of a installed working robot for a troy cable with mobile and tension system. In this paper, an approach to designing controllers for dynamic hybrid Tension/Mobile control of a installed robot for a troy wire cable is presented. Mobile control system of robot is designed based on equation of dc motor and motion for moving robot and tension control system is designed based on equation of ac servomotor for generating torque and dynamic equation of a wire cable. The control parameters is determined by simulation in independence operation of two system.

  • PDF

Implementation of a Hybrid Navigation System for a Mobile Robot by Using INS/GPS and Indirect Feedback Kalman Filter (INS/GPS와 간접 되먹임 칼만 필터를 사용하는 이동 로봇의 복합 항법 시스템의 구현)

  • Kim, Min J.;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.373-379
    • /
    • 2015
  • A hybrid navigation system is implemented to apply for a mobile robot. The hybrid navigation system consists of an inertial navigation system and a global positioning system. The inertial navigation system quickly calculates the position and the attitude of the robot by integrating directional accelerations, angular speed, and heading angle from a strap-down inertial measurement unit, but the results are available for a short time since it tends to diverge quickly. Global positioning system delivers position, heading angle, and traveling speed stably, but it has large deviation with slow update. Therefore, a hybrid navigation system uses the result from an inertial navigation system and corrects the result with the help of the global positioning system where an indirect feedback Kalman filter is used. We implement and confirm the performance of the hybrid navigation system through driving a car attaching it.