• 제목/요약/키워드: Hybrid Memory

검색결과 284건 처리시간 0.036초

Electrical Properties of Metal-Oxide Quantum dot Hybrid Resistance Memory after 0.2-MeV-electron Beam Irradiation

  • Lee, Dong Uk;Kim, Dongwook;Kim, Eun Kyu;Pak, Hyung Dal;Lee, Byung Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.311-311
    • /
    • 2013
  • The resistance switching memory devices have several advantages to take breakthrough for the limitation of operation speed, retention, and device scale. Especially, the metal-oxide materials such as ZnO are able to fabricate on the flexible and visible transparent plastic substrate. Also, the quantum dots (QDs) embedded in dielectric layer could be improve the ratio between the low and the high resistance becauseof their Coulomb blockade, carrier trap and induced filament path formation. In this study, we irradiated 0.2-MeV-electron beam on the ZnO/QDs/ZnO structure to control the defect and oxygen vacancy of ZnO layer. The metal-oxide QDs embedded in ZnO layer on Pt/glass substrate were fabricated for a memory device and evaluated electrical properties after 0.2-MeV-electron beam irradiations. To formation bottom electrode, the Pt layer (200 nm) was deposited on the glass substrate by direct current sputter. The ZnO layer (100 nm) was deposited by ultra-high vacuum radio frequency sputter at base pressure $1{\times}10^{-10}$ Torr. And then, the metal-oxide QDs on the ZnO layer were created by thermal annealing. Finally, the ZnO layer (100 nm) also was deposited by ultra-high vacuum sputter. Before the formation top electrode, 0.2 MeV liner accelerated electron beams with flux of $1{\times}10^{13}$ and $10^{14}$ electrons/$cm^2$ were irradiated. We will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device.

  • PDF

비트-맵 기반의 혼합형 고속 IP 검색 기법 (Bit-Map Based Hybrid Fast IP Lookup Technique)

  • 오승현
    • 한국멀티미디어학회논문지
    • /
    • 제9권2호
    • /
    • pp.244-254
    • /
    • 2006
  • 본 논문은 고속 IP 검색을 위해 거대한 포워딩 테이블을 인덱싱하는 트라이(trie)를 캐시에 저장할 수 있는 작은 크기로 압축하는 복합적 기법을 제안한다. 본 논문의 복합적 기법은 bit-map과 controlled-prefix 기법을 복합한 것으로 저속의 주 메모리 검색을 약간의 계산을 포함한 고속 메모리 검색으로 대체한다. bit-map 트라이 압축 기법은 트라이의 인덱스와 자식 포인터를 각각 하나의 비트로 표시한다. 예를 들면 한 노드가 n bit 대표할 때 bit-map은 노드에서 연결된 $2^n$개의 인덱스와 자식 링크를 $2^{n-1}$ bit로 표시함으로써 높은 메모리 압축효과를 제공한다. controlled-prefix 기법은 주어진 트라이 계층 개수에 대해 각 계층의 깊이(stride) 즉, 트라이의 각 계층의 최상위 노드가 대표할 비트의 개수를 결정한다. 이때 controlled-prefix 기법은 주어진 트라이 계층 개수에 대해 최소의 트라이 크기를 구하기 위해 동적 프로그래밍(dynamic programming) 기법을 사용한다. 본 연구는 트라이 계층 개수에 따라 최적의 메모리 크기와 검색속도를 제시함으로써 시스템의 메모리 크기와 요구되는 검색속도에 맞추어 적절한 트라이 구조를 선택할 수 있는 기준을 제안한다.

  • PDF

페이지 주소 캐시를 활용한 NAND 플래시 메모리 파일시스템에서의 효율적 주소 변환 테이블 관리 정책 (An Efficient Address Mapping Table Management Scheme for NAND Flash Memory File System Exploiting Page Address Cache)

  • 김정길
    • 디지털콘텐츠학회 논문지
    • /
    • 제11권1호
    • /
    • pp.91-97
    • /
    • 2010
  • 비휘발성, 저전력 소모, 안정성 등의 장점을 가진 NAND 플래시 메모리는 고집적화, 대용량화, 저가격화를 통하여 다양한 디지털시스템의 데이터 저장장치로 사용되고 있다. 플래시 메모리의 다양한 분야에서의 응용 확대와 동시에 플래시 메모리의 대용량화는 플래시 메모리의 주소 변환 테이블의 전체 크기를 증가시켜 SRAM에 저장하기에 용량이 부족한 문제점을 발생시킨다. 본 논문에서는 하이브리드 변환 기법 기반의 플래시 메모리 파일 시스템에서 페이지 주소 캐시를 이용한 효율적인 주소 테이블 관리 정책을 제안한다. 제안하는 기법은 다양한 메타 데이터 기반의 전체 테이블의 정보를 맵블록을 이용하여 효율적으로 통합 관리함으로써 높은 성능을 유지할 수 있다. PC 환경에서의 다양한 응용프로그램을 실험한 결과 제안하는 페이지 주소 캐시는 2.5% 이하의 낮은 미스율로 높은 효율성을 유지하며 전체 쓰기 연산 요청에서 평균 33%의 실제 쓰기 연산의 실행으로 전체 쓰기 연산에서 발생하는 오버헤드를 줄여 주었다.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

ZnO 나노선 - Au 나노입자 하이브리드 메모리 소자 (A ZnO nanowire - Au nanoparticle hybrid memory device)

  • 김상식;염동혁;강정민;윤창준;박병준;김기현;정동영;김미현;고의관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.20-20
    • /
    • 2007
  • Nanowire-based field-effect transistors (FETs) decorated with nanoparticles have been greatly paid attention as nonvolatile memory devices of next generation due to their excellent transportation ability of charge carriers in the channel and outstanding capability of charge trapping in the floating gate. In this work, top-gate single ZnO nanowire-based FETs with and without Au nanoparticles were fabricated and their memory effects were characterized. Using thermal evaporation and rapid thermal annealing processes, Au nanoparticles were formed on an $Al_2O_3$ layer which was semi cylindrically coated on a single ZnO nanowire. The family of $I_{DS}-V_{GS}$ curves for the double sweep of the gate voltage at $V_{DS}$ = 1 V was obtained. The device decorated with nanoparticles shows giant hysterisis loops with ${\Delta}V_{th}$ = 2 V, indicating a significant charge storage effect. Note that the hysterisis loops are clockwise which result from the tunneling of the charge carriers from the nanowire into the nanoparticles. On the other hand, the device without nanoparticles shows a negligible countclockwise hysterisis loop which reveals that the influence of oxide trap charges or mobile ions is negligible. Therefore, the charge storage effect mainly comes from the nanoparticles decorated on the nanowire, which obviously demonstrates that the top-gate single ZnO nanowire-based FETs decorated with Au nanoparticles are the good candidate for the application in the nonvolatile memory devices of next generation.

  • PDF

Hybrid Fuzzy Association Structure for Robust Pet Dog Disease Information System

  • Kim, Kwang Baek;Song, Doo Heon;Jun Park, Hyun
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.234-240
    • /
    • 2021
  • As the number of pet dog-related businesses is rising rapidly, there is an increasing need for reliable pet dog health information systems for casual pet owners, especially those caring for older dogs. Our goal is to implement a mobile pre-diagnosis system that can provide a first-hand pre-diagnosis and an appropriate coping strategy when the pet owner observes abnormal symptoms. Our previous attempt, which is based on the fuzzy C-means family in inference, performs well when only relevant symptoms are provided for the query, but this assumption is not realistic. Thus, in this paper, we propose a hybrid inference structure that combines fuzzy association memory and a double-layered fuzzy C-means algorithm to infer the probable disease with robustness, even when noisy symptoms are present in the query provided by the user. In the experiment, it is verified that our proposed system is more robust when noisy (irrelevant) input symptoms are provided and the inferred results (probable diseases) are more cohesive than those generated by the single-phase fuzzy C-means inference engine.

Thermal buckling of rectangular sandwich plates with advanced hybrid SMA/CNT/graphite/epoxy composite face sheets

  • Saeed Kamarian;Jung-Il Song
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.261-271
    • /
    • 2023
  • The present study follows three main goals. First, an analytical solution with high accuracy is developed to assess the effects of embedding pre-strained shape memory alloy (SMA) wires on the critical buckling temperatures of rectangular sandwich plates made of soft core and graphite fiber/epoxy (GF/EP) face sheets based on piecewise low-order shear deformation theory (PLSDT) using Brinson's model. As the second goal, this study compares the effects of SMAs on the thermal buckling of sandwich plates with those of carbon nanotubes (CNTs). The glass transition temperature is considered as a limiting factor. For each material, the effective ranges of operating temperature and thickness ratio are determined for real situations. The results indicate that depending on the geometric parameters and thermal conditions, one of the SMAs and CNTs may outperform the other. The third purpose is to study the thermal buckling of sandwich plates with advanced hybrid SMA/CNT/GF/EP composite face sheets. It is shown that in some circumstances, the co-incorporation of SMAs and CNTs leads to an astonishing enhancement in the critical buckling temperatures of sandwich plates.

Linux 기반의 하이브리드 하드 디스크 시뮬레이터 설계 및 구현 (Design and Implementation of Hybrid Hard Disk Simulator based on Linux Environment)

  • 이근형;김덕환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.649-650
    • /
    • 2008
  • In order to resolve mechanical limit in HDD, recently, the hybrid hard disk combining HDD and a flash memory was launched. In this paper, we propose a simulator for hybrid hard disk which considers redirection, flushing and spin-down function to complement the difference between HDD and hybrid hard disk. The simulator was implemented in linux kernel 2.6.20 by modifying system calls related with file system. The experiment shows that the power consumption of hybrid hard disk is 47% smaller than that of hard disk in laptop PC.

  • PDF

Performance Evaluation and Prediction on a Clustered SMP System for Aerospace CED Applications with Hybrid Paradigm

  • Matsuo Yuichi;Sueyasu Naoki;Inari Tomohide
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.275-278
    • /
    • 2006
  • Japan Aerospace Exploration Agency has introduced a new terascale clusterd SMP system as a main compute engine of Numerical Simulator III for aerospace science and engineering research purposes. The system is using Fujitsu PRIMEPOWER HPC2500; it has computing capability of 9.3Tflop/s peak performance and 3.6TB of user memory, with about 1,800 scalar processors for computation. In this paper, we first present the performance evaluation results for aerospace CFD applications with hybrid programming paradigm used at JAXA. Next we propose a performance prediction formula for hybrid codes based on a simple extension of AMhhal's law, and discuss about the predicted and measured performances for some typical hybrid CFD codes.

  • PDF

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.