• Title/Summary/Keyword: Hybrid LDC

Search Result 16, Processing Time 0.029 seconds

Design and Implementation of 1.8kW bi-directional LDC with Parallel Control Strategy for Mild Hybrid Electric Vehicles (병렬제어기법이 적용된 1.8kW급 마일드 하이브리드 양방향 LDC 설계 및 구현)

  • Kim, Hyun-Bin;Jeong, Jea-Woong;Bae, Sungwoo;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • This paper presents a design and parallel control strategy of 1.8 kW low-voltage DC-DC converter (LDC) for mild hybrid electric vehicles to improve their power density, system efficiency, and operation stability. Topology and control scheme are important on the LDC for mild hybrid electric vehicles to achieve high system efficiency and power density because of their very low voltage and large current in input and output terminals. Therefore, the optimal topological structure and control algorithm are examined, and a detailed design methodology for the power and control stages is presented. A working sample of 1.8 kW LDC is designed and implemented by applying the adopted topology and control strategy. Experimental results indicate 92.45% of the maximum efficiency and 560 W/l of power density.

A Novel Integrated Battery Charger Structure for Multiple Charge and V2G application for Electric Vehicles (전기자동차의 다중충전 및 V2G 응용을 위한 새로운 통합 배터리 충전기구조)

  • Vu, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.13-14
    • /
    • 2016
  • This paper has introduces a novel Integrated On-board Charger (IOBC) to reduce the size, weight and cost of power conversion stages in Electric Vehicles (EVs). The IOBC is composed of an OBC and a low voltage dc-dc converter (LDC). The IOBC includes a bidirectional ac-dc converter and a bidirectional full-bridge converter with an active clamp circuit. The LDC converter is a hybrid topology combining an active clamped full-bridge converter and a forward converter derived from the Weinburg converter topology. Unlike conventional OBC, the proposed IOBC is compact and the LDC converter of it can achieve a higher efficiency. In addition, the LDC converter of the proposed IOBC can achieve high step-down voltage conversion ratio, no circulating current, no reverse recovery current of the rectifier diodes and small ripple current of output inductor on the auxiliary battery. A 1kW hardware of the LDC converter is implemented to verify the performances of the proposed IOBC.

  • PDF

Design and Control Method of ZVT Interleaved Bidirectional LDC for Mild-Hybrid Electric Vehicle

  • Lee, Soon-Ryung;Lee, Jong-Young;Jung, Won-Sang;Won, Il-Kwon;Bae, Joung-Hwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.226-239
    • /
    • 2018
  • In this paper, design and control method ZVT Interleaved Bidirectional LDC(IB-LDC) for mild-hybrid electric vehicle is proposed. The IB-LDC is composed of interleaved buck and boost converters employing an auxiliary inductor and auxiliary capacitors to achieve zero-voltage-transition. Operating principle of IB-LDC according to operation mode is introduced and mathematically analyzed in buck and boost mode. Moreover, PFM and phase control are proposed to reduce circulating current for low power range. Passive components design such as main inductor, auxiliary inductor and capacitors is suggested, considering ZVT condition and maximizing efficiency. Furthermore, a 600W prototype of ZVT IB-LDC for MHEVs is built and tested to verify validity.

Design of a LDC Recycling Load Tester for Hybrid and Electric Vehicles (하이브리드 및 전기 자동차용 LDC 재생형 부하 시험기 설계)

  • Lee, Choon-Il;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6258-6263
    • /
    • 2014
  • The LDC (Low Voltage DC-DC Converter) used for hybrid vehicles and electric vehicles was utilized to supply the electric apparatus load with a voltage and to charge the auxiliary batteries by receiving a high DC voltage from the high voltage battery. The LDC has a long-time load test during the manufacturing process. On the other hand, it has the disadvantage of considerable energy consumption because it has the structure to release the power as 100% heat during a load test. Therefore, in this paper, a recycling load test method was proposed and 75~90% energy saving was realized.

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

Hybrid MIMO Transmission System with LDC (LDC를 이용한 하이브리드 MIMO 전송 시스템)

  • Jo, Bong Gyun;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • MIMO(multi-input multi-output) 시스템은 여러 개의 송 수신기를 이용하여 정보를 전송하여 주파수 대역폭의 확장 없이 채널 용량을 증가시킨다. 그러나 공간 다이버시티를 증가시키는 STBC(space time block code)를 제외한 공간 다중화 방식을 사용하는 LDC(linear dispersion code) 시스템은 변조 레벨이 증가할수록 수신기의 복잡도가 기하급수적으로 높아진다. 본 논문에서는 하이브리드 LDC-MIMO 시스템을 적용하여 낮은 변조 레벨에서도 전송량을 증가시키면서 수신기의 복잡도를 감소시킬 수 있는 시스템을 제안한다. 제안된 알고리듬은 컴퓨터 시뮬레이션을 통하여 검증하였다.

  • PDF

Improved Hybrid MIMO Scheme for Next Generation Communication System (차세대 통신 시스템을 위한 향상된 하이브리드 MIMO 기법)

  • Jo, Bong-Gyun;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.969-976
    • /
    • 2011
  • In this paper, a terrestrial transmission system is proposed for the next generation digital television (DTV) system by applying a hybrid multi-input multi-output (MIMO) technology based on linear dispersion codes (LDCs). The digital video broadcasting-2nd generation terrestrial (DVB-T2) system adopted a space time block code (STBC) for improving receive performance. However, the data rate of STBC is not increased in proportion to the transmitter. The hybrid STBC scheme utilizes several STBC transmission blocks for increasing data rate. It is possible to increase the data rate and performance in the receiver by utilizing LDC. The performances of the proposed and conventional hybrid STBC schemes are evaluated through computer simulations.

Interleaved Bi-directional LDC with Soft-switching for 48V system of Mild-HEV (Mild-HEV용 48V 시스템에 적용되는 소프트 스위칭 방식의 인터리브드 양방향 LDC)

  • Lee, Jong-Young;Lee, Soon-Ryung;Baek, Seung-Ho;Lee, Kang-Hyun;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.401-402
    • /
    • 2016
  • This paper presents interleaved bi-directional LDC(Low DC-DC converter) with soft-switching for 48V system of Mild-HEV(Hybrid Electric Vehicles). The proposed LDC is composed of interleaved bi-directional converter and small resonant inductor and capacitors. Comparing the conventional converter, the proposed LDC improves the problem of switching loss by employing soft-switching. In this paper, mode analysis is described in detail for operating the soft-switching. The proposed LDC is verified by PSIM simulation.

  • PDF

Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS (친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구)

  • Kim, Tae-Hoon;Song, Hyun-Sik;Lee, Baek-Haeng;Lee, Chan-Song;Kwon, Cheol-Soon;Jung, Do-Yang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

Implementaion of 1.8kW bi-directional LDC with Parallel Control for Mild Hybrid Electric Vehicle (1.8kW급 마일드하이브리드 차량용 양방향 LDC의 병렬제어 구현)

  • Kim, Hyun-Bin;Kim, Jong-Soo;Jeon, Sun-Woo;Kim, Jeong-Tae;Bae, Sung-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.389-390
    • /
    • 2016
  • 본 논문에서는 마일드하이브리드 차량용 양방향 LDC의 동작 신뢰성 향상을 위해 2병렬 구성된 1.8kW급 LDC의 설계 및 제어에 대해 기술한다. 양방향 LDC 구현을 위한 최적 회로방법 및 병렬 구동을 위한 제어 방법에 대해 고찰하고 Working Sample 수준의 실험세트 제작내용 및 실험 결과를 제시한다.

  • PDF