• 제목/요약/키워드: Hybrid Flow Shop

Search Result 16, Processing Time 0.021 seconds

Hybrid Shop Floor Control System for Computer Integrated Manufacturing (CIM)

  • Park, Kyung-Hyun;Lee, Seok-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.544-554
    • /
    • 2001
  • A shop floor can be considered as an important level to develop Computer Integrated Manufacturing system (CIMs). However, a shop floor is a dynamic environment where unexpected events continuously occur, and impose changes to the planned activities. To deal with this problem, a shop floor should adopt an appropriate control system that is responsible for the coordination and control of the manufacturing physical flow and information flow. In this paper, a hybrid control system is described with a shop floor activity methodology called Multi-Layered Task Initiation Diagram (MTD). The architecture of the control model contains three levels: i.e., he shop floor controller (SFC), the intelligent agent controller (IAC) and the equipment controller (EC). The methodology behind the development of the control system is an intelligent multi-agent paradigm that enables the shop floor control system to be an independent, an autonomous, and distributed system, and to achieve an adaptability to change of the manufacturing environment.

  • PDF

Hybrid Flow Shop with Parallel Machines at the First Stage and Dedicated Machines at the Second Stage

  • Yang, Jaehwan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.22-31
    • /
    • 2015
  • In this paper, a two-stage hybrid flow shop problem is considered. Specifically, there exist identical parallel machines at stage 1 and two dedicated machines at stage 2, and the objective of the problem is to minimize makespan. After being processed by any machine at stage 1, a job must be processed by a specific machine at stage 2 depending on the job type, and one type of jobs can have different processing times on each machine. First, we introduce the problem and establish complexity of several variations of the problem. For some special cases, we develop optimal polynomial time solution procedures. Then, we establish some simple lower bounds for the problem. In order to solve this NP-hard problem, three heuristics based on simple rules such as the Johnson's rule and the LPT (Longest Processing Time first) rule are developed. For each of the heuristics, we provide some theoretical analysis and find some worst case bound on relative error. Finally, we empirically evaluate the heuristics.

Two-Stage Hybrid Flow Shop Scheduling: Minimizing the Number of Tardy Jobs (2 단계 혼합흐름공정에서의 일정계획문제에 관한 연구)

  • Choi Hyun-Seon;Lee Dong-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1133-1138
    • /
    • 2006
  • This paper considers a hybrid flow shop scheduling problem for the objective of minimizing the number of tardy jobs. The hybrid flow shop consists of two stages in series, each of which has multiple identical parallel machines, and the problem is to determine the allocation and sequence of jobs at each stage. A branch and bound algorithm that gives the optimal solutions is suggested that incorporates the methods to obtain the lower and upper bounds. Dominance properties are also derived to reduce the search space. To show the performance of the algorithm, computational experiments are done on randomly generated problems, and the results are reported.

  • PDF

A Branch and Bound Algorithm for Two-Stage Hybrid Flow Shop Scheduling : Minimizing the Number of Tardy Jobs (2단계 혼합흐름공정에서 납기 지연 작업수의 최소화를 위한 분지한계 알고리듬)

  • Choi, Hyun-Seon;Lee, Dong-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.213-220
    • /
    • 2007
  • This paper considers a two-stage hybrid flow shop scheduling problem for the objective of minimizing the number of tardy jobs. Each job is processed through the two production stages in stages, each of which has multiple identical parallel machines. The problem is to determine the allocation and sequence of jobs at each stage. A branch and bound algorithm that gives the optimal solutions is suggested that incorporates the methods to obtain the lower and upper bounds. Dominance properties are also suggested to reduce the search space. To show the performance of the algorithm, computational experiments are done on randomly generated problems, and the results are reported.

Multi-factors Bidding method for Job Dispatching in Hybrid Shop Floor Control System

  • Lee, Seok--Hee;Park, Kyung-Hyun;Bae, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.124-131
    • /
    • 2000
  • A shop floor can be considered as and importand level to develop a Computer Integrated Manufacturing system (CIMs). The shop foor is a dynamic environment where unexpected events contrinuously occur, and impose changes to planned activities. The shop floor should adopt an appropriate control system that is responsible for scheduling coordination and moving the manufacturing material and information flow. In this paper, the architecture of the hybrid control model identifies three levels; i.e., the shop floor controller (SFC), the cell controller(CC) and the equipment controller (EC). The methodology for developing these controller is employ an object-oriented approach for static models and IDEF0 for function models for dispatching a job. SFC and CC are coordinated by employing a multi-factors bidding and an adapted Analytic Hierarchy Process(AHP) prove applicability of the suggested method. Test experiment has been conducted by with the shopfloor, consisting of six manufacturing cells.

  • PDF

A Two-Stage Scheduling Approach on Hybrid Flow Shop with Dedicated Machine (전용기계가 있는 혼합흐름공정의 생산 일정 계획 수립을 위한 2단계 접근법)

  • Kim, Sang-Rae;Kang, Jun-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.823-835
    • /
    • 2019
  • Purpose: This study deals with a production planning and scheduling problem to minimize the total weighted tardiness on hybrid flow shop with sets of non-identical parallel machines on stages, where parallel machines in the set are dedicated to perform specific subsets of jobs and sequence-dependent setup times are also considered. Methods: A two-stage approach, that applies MILP model in the 1st stage and dispatching rules in the 2nd stage, is proposed in this paper. The MILP model is used to assign jobs to a specific machine in order to equalize the workload of the machines at each stage, while new dispatching rules are proposed and applied to sequence jobs in the queue at each stage. Results: The proposed two-stage approach was implemented by using a commercial MILP solver and a commercial simulation software and a case study was developed based on the spark plug manufacturing process, which is an automotive component, and verified using the company's actual production history. The computational experiment shows that it can reduce the tardiness when used in conjunction with the dispatching rule. Conclusion: This proposed two-stage approach can be used for HFS systems with dedicated machines, which can be evaluated in terms of tardiness and makespan. The method is expected to be used for the aggregated production planning or shop floor-level production scheduling.

Minimizing the Total Stretch in Flow Shop Scheduling

  • Yoon, Suk-Hun
    • Management Science and Financial Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-37
    • /
    • 2014
  • A flow shop scheduling problem involves scheduling jobs on multiple machines in series in order to optimize a given criterion. The flow time of a job is the amount of time the job spent before its completion and the stretch of the job is the ratio of its flow time to its processing time. In this paper, a hybrid genetic algorithm (HGA) approach is proposed for minimizing the total stretch in flow shop scheduling. HGA adopts the idea of seed selection and development in order to reduce the chance of premature convergence that may cause the loss of search power. The performance of HGA is compared with that of genetic algorithms (GAs).

Hybrid Genetic Algorithms for Solving Reentrant Flow-Shop Scheduling with Time Windows

  • Chamnanlor, Chettha;Sethanan, Kanchana;Chien, Chen-Fu;Gen, Mitsuo
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.306-316
    • /
    • 2013
  • The semiconductor industry has grown rapidly, and subsequently production planning problems have raised many important research issues. The reentrant flow-shop (RFS) scheduling problem with time windows constraint for harddisk devices (HDD) manufacturing is one such problem of the expanded semiconductor industry. The RFS scheduling problem with the objective of minimizing the makespan of jobs is considered. Meeting this objective is directly related to maximizing the system throughput which is the most important of HDD industry requirements. Moreover, most manufacturing systems have to handle the quality of semiconductor material. The time windows constraint in the manufacturing system must then be considered. In this paper, we propose a hybrid genetic algorithm (HGA) for improving chromosomes/offspring by checking and repairing time window constraint and improving offspring by left-shift routines as a local search algorithm to solve effectively the RFS scheduling problem with time windows constraint. Numerical experiments on several problems show that the proposed HGA approach has higher search capability to improve quality of solutions.

Scheduling of a Flow Shop with Setup Time (Setup 시간을 고려한 Flow Shop Scheduling)

  • Kang, Mu-Jin;Kim, Byung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.797-802
    • /
    • 2000
  • Flow shop scheduling problem involves processing several jobs on common facilities where a setup time Is incurred whenever there is a switch of jobs. Practical aspect of scheduling focuses on finding a near-optimum solution within a feasible time rather than striving for a global optimum. In this paper, a hybrid meta-heuristic method called tabu-genetic algorithm(TGA) is suggested, which combines the genetic algorithm(GA) with tabu list. The experiment shows that the proposed TGA can reach the optimum solution with higher probability than GA or SA(Simulated Annealing) in less time than TS(Tabu Search). It also shows that consideration of setup time becomes more important as the ratio of setup time to processing time increases.

  • PDF

A Study on Combinatorial Dispatching Decision of Hybrid Flow Shop : Application to Printed Circuit Board Process (혼합 흐름공정의 할당규칙조합에 관한 연구: 인쇄회로기판 공정을 중심으로)

  • Yoon, Sungwook;Ko, Daehoon;Kim, Jihyun;Jeong, Sukjae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.10-19
    • /
    • 2013
  • Dispatching rule plays an important role in a hybrid flow shop. Finding the appropriate dispatching rule becomes more challenging when there are multiple criteria, uncertain demands, and dynamic manufacturing environment. Using a single dispatching rule for the whole shop or a set of rules based on a single criterion is not sufficient. Therefore, a multi-criteria decision making technique using 'the order preference by similarity to ideal solution' (TOPSIS) and 'analytic hierarchy process' (AHP) is presented. The proposed technique is aimed to find the most suitable set of dispatching rules under different manufacturing scenarios. A simulation based case study on a PCB manufacturing process is presented to illustrate the procedure and effectiveness of the proposed methodology.