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Abstract 

 

This paper considers a hybrid flow shop scheduling 

problem for the objective of minimizing the number 

of tardy jobs. The hybrid flow shop consists of two 

stages in series, each of which has multiple identical 

parallel machines, and the problem is to determine 

the allocation and sequence of jobs at each stage. A 

branch and bound algorithm that gives the optimal 

solutions is suggested that incorporates the methods 

to obtain the lower and upper bounds. Dominance 

properties are also derived to reduce the search space. 

To show the performance of the algorithm, 

computational experiments are done on randomly 

generated problems, and the results are reported. 
 

 

1. Introduction 

 

A hybrid flow shop, alternatively called a flow shop 

with multiple processors, is an extended system of 

the classical flow shop. The overall system consists 

of two or more production stages in series, but there 

exist one or more parallel machines at each stage. 

The parallel machines are added to each stage of the 

flow shop for the objective of increasing productivity 

and/or flexibility. The hybrid flow shop can be found 

in the electronics industry such as printed circuit 

board (PCB) manufacturing, semiconductor 

manufacturing, and lead frame manufacturing [13, 

14]. Also, a number of traditional industries, such as 

food, chemical and steel, have various types of hybrid 

flow shops [17]. 

In the hybrid flow shop, the flow of jobs is 

basically unidirectional through the serial production 

stages, and each job can be processed by one of the 

identical or nonidentical parallel machines at each 

stage. There may be finite buffers to decouple 

consecutive production stages. Also, a certain amount 

of setup time may be required when changing the 

product type at each machine.  

Among various decision problems in hybrid flow 

shops, this paper considers the scheduling problem. 

In general, there are two types of decisions in hybrid 

flow shop scheduling: assigning jobs to machines at 

each stage and sequencing jobs at each machine.  

There are a number of research articles on hybrid 

flow shop scheduling. (See Linn and Zhang [14] for a 

literature review.) Most of them deal with the 

measures without due-date, such as makespan or 

mean flow time. Gupta and Tunc [8] consider the 

objective of minimizing makespan, and suggest 

heuristic algorithms. Other heuristics are suggested 

by Chen [4] and Lee and Vairaktarakis [11] that 

consider two-stage hybrid flow shops. Fouad et al. 

[5] consider a three-stage hybrid flow shop 

scheduling problem in the woodworking industry and 

suggest heuristic algorithms. Brah and Hunsucker [3] 

suggest branch and bound algorithms that minimize 

makespan, and their lower bounds are improved by 

Moursli and Pochet [16]. Also, Azizoglu et al. [1] 

consider the objective of minimizing total flow time, 

and suggest another branch and bound algorithm.   

Several research articles consider due-date based 

measures. Guinet and Solomon [7] develop several 

list scheduling algorithms for the multi-stage hybrid 

flow shop scheduling problem. The objectives 

considered are minimizing maximum tardiness or 

maximum completion time. Recently, Lee and Kim 

[12] considered a two-stage hybrid with parallel 

machines only at the first stage, and suggested a 

branch and bound algorithm that minimizes total 

tardiness, and Lee et al. [13] considered multi-stage 

hybrid flowshops and suggested a bottleneck-focused 

heuristic in which a schedule for a bottleneck stage is 

first constructed and then schedules for other stages 

are constructed based on the schedule for the 

bottleneck. 

This paper focuses on a scheduling problem in two-

stage hybrid flow shops with two or more identical 

parallel machines at each stage. The objective is to 
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minimize the number of tardy jobs. Here, a tardy job 

is defined as the job whose completion time is greater 

than its due date. This objective is important in many 

cases since the cost penalty incurred by a tardy job 

does not depend on how late it is, but the fact that it is 

late. For example, a late job may cause a customer to 

switch to another supplier, especially in the just-in-

time production environment [10]. As noted in the 

previous research articles, the problem considered in 

this paper is an NP-hard problem. This can be easily 

seen from the fact that the parallel machine 

scheduling problem that minimizes the number of 

tardy jobs is NP-hard [6]. 

The objective of minimizing the number of tardy 

jobs is dealt with by Gupta and Tunc [9] that 

considers a two-stage hybrid flow shop with only one 

machine at the first stage. To solve the problem, they 

suggest several heuristic algorithms. Unlike this, we 

focus on general two-stage hybrid flow shops in 

which two or more machines may exist at each stage 

and suggest a branch and bound algorithm that gives 

optimal solutions. The methods to obtain lower and 

upper bounds are incorporated in the algorithm. 

Dominance properties are also derived to reduce the 

solution space. To show the performance of the 

algorithm, computational experiments are performed 

on randomly generated problems, and the results are 

reported. 

In the next section, the problem considered here is 

described in more detail with a mathematical 

formulation. The branch and bound algorithm is 

presented in Section 3, and the results of 

computational test are presented in Section 4. Finally, 

Section 5 concludes the paper with a short summary 

and discussions on possible extensions.  

 

 

2. Problem Description 

 

Before describing the problem considered in this 

paper, we present a general structure of the multi-

stage hybrid flow shop in Figure 1. In this figure, K 

and Mk denote the number of stages and the number 

of machines at stage k, respectively. Each job consists 

of K operations and the kth operations of the jobs are 

processed on stage k. Note that this paper focuses on 

the two-stage general hybrid flow shop, i.e., K = 2 

and Mk > 1 for k=1, 2. Therefore, each job consists of 

two operations. The first operations of all jobs are 

processed on one of the machines at the first stage, 

and each of the second operations of the jobs can be 

processed on one of those at the second stage. Here, 

the operations are processed sequentially, without 

overlapping between stages. 

As stated earlier, there are two types of decision 

variables in the hybrid flow shop scheduling 

problem: (a) allocating jobs to machines at each 

stage; and (b) sequencing the jobs assigned to each 

machine. The objective is to minimize the number of 

tardy jobs, and can be represented as  

∑
=

n

i
iT

1

)(δ , 

Where Ti = max{0, Ci – di}, i.e., tardiness of job i, 

and δ(a) = 1 if a > 0, and 0 otherwise. Here, Ci and di 

denote the completion time and the due date of job i, 

respectively. Note that the completion times of jobs 

depend on the two decision variables, allocation and 

sequencing, and the problem considered here is to 

determine them for the objective of minimizing the 

number of tardy jobs in the two-stage hybrid flow 

shop. 

In this paper, we consider the deterministic and 

static version of the problem. That is, all jobs are 

ready for processing at time zero, and job descriptors, 

processing times and due dates, are deterministic and 

given in advance. It is assumed that the parallel 

machines at each stage are identical. Other 

assumptions made in the problem considered here 

are: (a) there is a buffer of an infinite capacity 

between the two stages; (b) no job can be split or pre-

emptied; (c) all machines are available at the 

beginning of the scheduling horizon; (d) each 

machine can process only one job at a time and each 

job can be processed on one machine; and (e) 

machine breakdowns are not considered.  

The problem can be formulated as an integer 

programming model. The notations used are 

summarized below. 

 

Parameters 

N      number of jobs 

Mk    number of identical machines in stage k 

pik processing time of job i at stage k,  

(i = 1,…, N, k = 1, 2) 

di   due date of job i 

V       large number 

 

Decision variables 

xijmk =1 if job j is processed directly after job i 

on machine m in stage k, and 0 otherwise  

x0jmk  =1 if job j is the first job to be processed on 

machine m in stage k, and 0 otherwise 

xi0mk  =1 if job i is the last job to be processed on 

machine m in stage k, and 0 otherwise 

cik       completion time of job i at stage k, 

1 

n jobs 

… 

… 

 parallel  
machines 

Stage 1  

2 

M1 

1 

… 

Stage 2  

2 

M2 

… 

 parallel  
machines 

1 

… 

Stage K  

2 

Mk 

 parallel  
machines 

Figure 1. Hybrid flow shop: a schematic view 
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Now, the integer programming model is given as 

follows. Note that the model is a modified one of that 

of Guinet and Solomon [7].   

 

Minimize ∑
=

N

i
iT

1

)(δ  

subject to  

1
1 0

=∑ ∑
=

≠
=

kM

m

N

ji
i

ijmkx    for all  j and k   (1) 

1
1
0 ≤∑

=

N

j
jmkx  for all m and k  (2) 

0
00

=− ∑∑

≠
=

≠
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N
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j
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N
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for all h, m and k         (3) 

Vxpcc
kM

m
ijmkjkikjk ⋅










−++≥ ∑

=1
1   

for all j, k and i = 0, …N (4) 

jkkjjk pcc +≥ −1,   for all j and k   (5) 

},0max{ 2 iii dcT −=     for all i (6) 

}1,0{)( ∈iTδ          for all i  (7) 

}1,0{∈ijmkx   for all i, j, k and m      (8) 

0≥jkc    for all j and k                   (9) 

00 =jc    for all j and 001 =c  (10) 

 

 

The objective function denotes minimizing the 

number of tardy jobs. Constraint (1) ensures that each 

job is processed once and once only at each stage. 

Constraint (2) specifies that each machine must be 

assigned to one job at most. Constraints (3) ensure 

that each job has a job predecessor and a job 

successor on its machine. The job completion time at 

each machine is represented by constraints (4) and (5). 

Constraint (6) specifies the tardiness of each job and 

is used to specify the number of tardy jobs. Finally, 

the other constraints (7), (8), (9) and (10) are the 

conditions on the decision variables.  

 

 

3. Branch and Bound Algorithm 

 

This section presents the branch and bound (B&B) 

algorithm suggested in this paper. First, we explain 

the branching scheme that generates all possible 

solutions. Then, the methods to obtain the lower and 

upper bounds are presented. As in the ordinary B&B 

algorithm, each node of the B&B tree can be deleted 

from further consideration (fathomed) if the lower 

bound at the node is greater than or equal to the 

incumbent solution value, i.e., the smallest upper 

bound of all nodes obtained so far. Dominance 

properties are also suggested to reduce the solution 

space. 

 

3.1 Branching strategy  
 

To generate all possible solutions in the two-stage 

hybrid flow shop scheduling, we adopt the idea 

suggested by Azizoglu et al. [1] that consider the 

problem of minimizing total flow time. 

The entire B&B tree consists of two subtrees in 

series, each of which represents N! orderings of jobs 

for each stage of the two-hybrid flow shop. In the 

first subtree, N nodes are branched at the first level, N 

– 1 nodes at the second level, and so on. Also, the 

second subtree starts from each of the leaf nodes of 

the first subtree. That is, N nodes are branched at 

level N + 1, N – 1 nodes at the level N + 2, and so on. 

In this way, we can generate (N!)
2 
orderings of jobs.  

Each node of the subtree corresponds to a partial 

schedule in the corresponding stage. More 

specifically, at each node, a set of jobs can be 

specified by going back on the path from that node 

toward the root node, and each of these jobs are 

allocated and sequenced to the earlier available 

machine in sequence. In this way, we can generate all 

possible allocation and sequence at each stage since 

we consider the regular measure of performance. (See 

Azizoglu et al. [1] for more details.) For node 

selection (or branching), the depth-first rule is used in 

this paper. In this rule, if the current node is not 

fathomed, the next node to be considered is its child 

node with the smallest index. 

Figure 2 shows an example of the B&B tree for a 

problem with 3 jobs. It can be seen from the figure 

that this method determines the job schedule from the 

first to the second stage. 
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Figure 2. Branch and bound tree: example 
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3.2 Bounding strategy  

 

This subsection presents the methods to obtain the 

lower and upper bounds.  

 

Obtaining lower bound  

The lower bound suggested in this paper is 

computed at each node of the B&B tree. As stated 

earlier, each node of the B&B tree corresponds to a 

partial schedule and the lower bound is computed by 

estimating the smallest (and also infeasible) 

completion time of each job at the second stage. To 

do this, we use the partial schedule and the jobs not 

included in the partial schedule.  

Before describing the method, let PSl denote the set 

of jobs included in the partial schedule at node l. Two 

cases are considered in the computation of the lower 

bound.  

 

Case 1: Current node l in the first-stage subtree 

In this case, the lower bound at node l is obtained as  

NT1 + NT2, 

where NT1 is the number of tardy jobs for those in PSl 

and NT2 is the number of tardy jobs for those not in 

PSl.  

First, NT1 is obtained by estimating the smallest 

(and also infeasible) completion time of each job at 

the second stage. That is, it can be set as  





+
<+

=
otherwise,  

 if   

2

121
2

iT

Tiii
i p

cpc
c

ϕ
ϕ

 

where φT is ready time of the earliest available 

machine at second stage. Note that the smallest 

completion time given above is always smaller than 

that of the optimal schedule since the delay times are 

ignored. Then, the number of tardy jobs NT1 can be 

calculated by comparing the smallest completion time 

and due date of each job in PSl. 

Second, NT2 is obtained by relaxing the hybrid shop 

problem to the single machine problem that 

minimizes the number of tardy jobs. First, we modify 

the processing time of unscheduled job i ∉ PSl at the 
second stage as 

22
'
2 /Mpp ii = , 

i.e., the job splitting is allowed, and the 

corresponding single machine problem is solved 

using the optimal algorithm of Moore. (See Moore 

[15] for more details.) Then, the sequence of 

unscheduled jobs (for i ∉ PSl) is obtained. Finally, 
NT2 is calculated by comparing the completion time 

and the due date of each job not in PSl. 

Note that in this case, NT1 + NT2 can be the lower 

bound because it is computed in such a way that each 

unscheduled job is completed at the first stage before 

its release time at the second stage. Also the single 

machine problem is solved using the processing time 

divided by the number of parallel machines at the 

second stage. 

Case 2: Current node l in the second-stage subtree 

In this case, the lower bound is also obtained as  

NT1 + NT2. 

Here, NT1 is obtained using the method suggested in 

the first case, i.e., estimating the smallest (and also 

infeasible) completion time of each job at the second 

stage. On the other hand, NT2 is obtained by 

estimating the completion time as  

212 iii pcc +=    for
l

PSi∉ . 

Note that in this case, the waiting time of 

unscheduled jobs at the second stage, i.e. max{0, ci1- 

φT}, is ignored. Therefore, NT1 + NT2 can be the 

lower bound. That is, it is always less than the 

optimal number of tardy jobs.  

 

Obtaining upper bound  

The initial upper bound, i.e. feasible solution value, 

is obtained using two priority rules, EDD (earliest 

due date) and minimum slack time. Here, the EDD 

rule is used at the first stage after modifying the due 

date of each job as  

2' iii pdd −= , 

and the slack time is defined as.  

)( 21 iii ppd +−  

Note that the initial upper bound is set to the 

minimum of those obtained by the two rules. Also, 

the upper bound is updated if it is improved at the 

leaf nodes of the B&B tree.   

 

3.3. Dominance properties 

 

As stated earlier, the dominance properties are used 

to reduce the number of partial schedules that need to 

be examined in the search for the optimal schedule. 

Two properties are suggested in this paper. Note that 

the two dominance properties are checked at each 

node of the B&B tree.  

The first property, which is given below, specifies 

the condition that a job should be positioned last at 

the first stage. The proof is omitted here since it is 

similar to that of Azizoglu and Kirca [2].  

 

Proposition 1. There exists an optimal schedule in 

which job w is processed at final position on any one 

of the machines at first stage if 

( ) { }












−+≥ ∑
=

n

i

iiiw pmaxMp
M

'd

1

111
1

1
1

 

where dw`= dw – pw2.  

 

The second property specifies the condition that 

partial schedule σ•i is dominated by σ•j and job i is 

tardy job in partial schedule σ•i, Therefore job i 

should be positioned last at the first stage. Where σ•i 

is a partial schedule obtained by appending job i to 

the end of partial schedule σ.  
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Proposition 2. A partial schedule σ•i is dominated by 

σ•j for any partial schedule σ, i.e., job i should be 

positioned last at the first stage, if pi1 > pj1 and φT + 

pi1 > di – pi2. Here, φT is the ready time of the earliest 

available machine at the first stage in the partial 

schedule σ. 

Proof. Let i and j denote unscheduled jobs with 

respect to a partial schedule σ at a machine and 

c(σ•j)1 denote the completion time of job j at the first 

stage in the partial schedule σ•j. Then, two cases 

should be considered.  

Case1: c(σ•j)1 > dj – pj2 

In this case, jobs i and j are both tardy jobs at the 

first stage since φT + pi1 > di`. Hence, NT(σ•i) = 

NT(σ•j), where NT(•) denotes the number of tardy 

jobs in schedule •. 

Case2: c(σ•j)1 ≤ dj – pj2 

In this case, job j may not be a tardy job, i.e., 

NT(σ•i) ≠ NT(σ•j). Hence, it is better to position job 
i to the last position since pi1 > pj1. In other words, 

the unscheduled jobs can be moved earlier, which 

results in NT(σ•j) ≤ NT(σ•i).  

Therefore, the number of tardy jobs for partial 

schedule σ•j is less than that of σ•i. This completes 

the proof. g 

 

 

4. Computational Experiments 

 

To show the performance of the B&B algorithm 

suggested in this paper, computational tests were 

done on randomly generated test problems, and the 

results are reported in this section. All algorithms 

were coded in C++ and the test was performed on a 

workstation with an Intel Xeon processor operating at 

3.20 GHz 120 MHz clock speed.  

For the test, 960 problems were generated randomly, 

i.e., 10 problems for each of 96 combinations of the 

number of machines (1, 2, 3 and 4 at the first stage 

and 2, 3 and 4 at the second stage), four levels of the 

number of jobs (10, 12, 14 and 15), and two levels of 

the due date tightness (loose, tight). The processing 

times were generated from DU(10, 40), where DU(a, 

b) is the discrete uniform distribution with range [a, 

b]. Due dates were generated using the method of 

Gupta (1998). That is, they were generated from 

DU(Pα,Pβ), where α = {0.2, 0.4, 0.6 ,0.8} and β = 

{0.2, 0.4, 0.6 ,0.8} with β > α, and  
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Note that the parameters α and β (β > α) were set to 

{0.6, 0.8} {0.6, 0.8} for the case of loose due dates 

and {0.2, 0.4} and {0.2, 0.4} for the case of tight due 

dates.   

Test results on different problem sizes are 

summarized in Table 1 that shows the number of 

problems that the B&B algorithm gave the optimal 

solutions within 5000 seconds and average CPU 

seconds (in parenthesis). It can be seen from the table 

that the B&B algorithm gives the optimal solutions 

for most test problems. However, the computation 

times increase significantly when the number of jobs 

increases. Also, the number of machines at each stage 

plays an important role in problem difficulties. That 

is, the test problems having relatively large number 

of machines at the first stage were easier to solve. 

This is because our dominance properties consider 

the parallel machines at the first stage.  

 

Table1. Performance of the algorithm  

 
(a) Cases of loose due dates  

 

Number of jobs  Number of 

machines at each 

stage 10 12 14 15 

M2=2 10(0.5)* 10(8.4) 10(105.3) 9(2269.4) 

M2=3 10(0.3) 10(10.6) 10(253.1) 10(1006.9) M1=1 

M2=4 10(0.4) 10(14.1) 10(193.7) 9(3014.8) 

M2=2 10(0.3) 10(5.3) 10(85.2) 10(956.4) 

M2=3 10(0.2) 10(16.2) 10(140.9) 10(1009.1) M1=2 

M2=4 10(0.4) 10(7.4) 10(78.6) 10(2983.4) 

M2=2 10(0.2) 10(6.6) 10(133.5) 10(1096.4) 

M2=3 10(0.5) 10(8.4) 10(91.0) 10(3089.3) M1=3 

M2=4 10(0.3) 10(18.3) 10(156.2) 10(2040.6) 

M2=2 10(0.2) 10(8.2) 10(163.1) 10(563.4) 

M2=3 10(0.3) 10(3.2) 10(289.4) 10(1902.3) M1=4 

M2=4 10(0.2) 10(5.1) 10(170.4) 10(2634.5) 

* number of problems that the B&B gave the optimal solutions out of 10 

problems and CPU seconds (in parenthesis)  

 
(b) Cases of tight due dates 

 

Number of jobs  Number of 

machines at each 

stage 10 12 14 15 

M2=2 10(2.8) 10(12.3) 10(585.3)  8(2625.3)  

M2=3 10(1.2) 10(10.6) 10(725.3)  8(3025.1)  M1=1 

M2=4 10(1.1) 10(15.7) 9(663.4)  7(1005.6)  

M2=2 10(0.5) 10(6.3) 10(383.3)  9(2006.4) 

M2=3 10(0.9) 10(15.8) 10(425.6) 10(3523.2) M1=2 

M2=4 10(0.7) 10(13.8) 10(528.9)  9(4019.3)  

M2=2 10(0.6) 10(9.5) 10(631.5) 10(1263.4) 

M2=3 10(2.0) 10(3.1) 10(226.4) 10(1991.6) M1=3 

M2=4 10(1.5) 10(15.3) 10(341.6)  9(2536.1) 

M2=2 10(0.9) 10(6.9) 10(163.8) 10(10949.2) 

M2=3 10(1.6) 10(17.5) 10(512.3) 10(1697.2) M1=4 

M2=4 10(1.3) 10(8.6) 10(226.7) 10(2463.8) 

 

 

5. Concluding Remarks 

 
The paper considered a two-stage hybrid flow shop 

scheduling problem for the objective of minimizing 

the number of tardy jobs, and suggested a branch and 

bound algorithm that can give the optimal solutions. 

The methods to calculate lower and upper bounds are 

suggested, and two properties that characterize the 
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optimal solutions were also suggested to reduce the 

search space. Test results of computational 

experiments showed that the B&B algorithm 

suggested in this paper gave the optimal solutions for 

moderate-sized problems within a reasonable amount 

of computation time.   

This research can be extended in several directions. 

First, it is needed to develop more efficient 

algorithms to solve practical-sized problems. To do 

this, it may be necessary to develop heuristic 

algorithms, rather than the optimal algorithm Second, 

to make the research more practical, the problem 

should be extended to the case of general hybrid 

flowshops with more than two stages. In this case, the 

simulation study may be more applicable. Finally, the 

systems with uniform or unrelated parallel machines 

at each stage can be a practical extension.  
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