
2 단계단계단계단계 혼합흐름공정에혼합흐름공정에혼합흐름공정에혼합흐름공정에서의서의서의서의 일정계획일정계획일정계획일정계획문제에문제에문제에문제에 관한관한관한관한 연구연구연구연구

Two-Stage Hybrid Flow Shop Scheduling: Minimizing the Number of Tardy Jobs

Hyun-Seon Choi and Dong-Ho Lee

Department of Industrial Engineering

Hanyang University

Sungdong-gu, Seoul 133-791

KOREA

Abstract

This paper considers a hybrid flow shop scheduling

problem for the objective of minimizing the number

of tardy jobs. The hybrid flow shop consists of two

stages in series, each of which has multiple identical

parallel machines, and the problem is to determine

the allocation and sequence of jobs at each stage. A

branch and bound algorithm that gives the optimal

solutions is suggested that incorporates the methods

to obtain the lower and upper bounds. Dominance

properties are also derived to reduce the search space.

To show the performance of the algorithm,

computational experiments are done on randomly

generated problems, and the results are reported.

1. Introduction

A hybrid flow shop, alternatively called a flow shop

with multiple processors, is an extended system of

the classical flow shop. The overall system consists

of two or more production stages in series, but there

exist one or more parallel machines at each stage.

The parallel machines are added to each stage of the

flow shop for the objective of increasing productivity

and/or flexibility. The hybrid flow shop can be found

in the electronics industry such as printed circuit

board (PCB) manufacturing, semiconductor

manufacturing, and lead frame manufacturing [13,

14]. Also, a number of traditional industries, such as

food, chemical and steel, have various types of hybrid

flow shops [17].

In the hybrid flow shop, the flow of jobs is

basically unidirectional through the serial production

stages, and each job can be processed by one of the

identical or nonidentical parallel machines at each

stage. There may be finite buffers to decouple

consecutive production stages. Also, a certain amount

of setup time may be required when changing the

product type at each machine.

Among various decision problems in hybrid flow

shops, this paper considers the scheduling problem.

In general, there are two types of decisions in hybrid

flow shop scheduling: assigning jobs to machines at

each stage and sequencing jobs at each machine.

There are a number of research articles on hybrid

flow shop scheduling. (See Linn and Zhang [14] for a

literature review.) Most of them deal with the

measures without due-date, such as makespan or

mean flow time. Gupta and Tunc [8] consider the

objective of minimizing makespan, and suggest

heuristic algorithms. Other heuristics are suggested

by Chen [4] and Lee and Vairaktarakis [11] that

consider two-stage hybrid flow shops. Fouad et al.

[5] consider a three-stage hybrid flow shop

scheduling problem in the woodworking industry and

suggest heuristic algorithms. Brah and Hunsucker [3]

suggest branch and bound algorithms that minimize

makespan, and their lower bounds are improved by

Moursli and Pochet [16]. Also, Azizoglu et al. [1]

consider the objective of minimizing total flow time,

and suggest another branch and bound algorithm.

Several research articles consider due-date based

measures. Guinet and Solomon [7] develop several

list scheduling algorithms for the multi-stage hybrid

flow shop scheduling problem. The objectives

considered are minimizing maximum tardiness or

maximum completion time. Recently, Lee and Kim

[12] considered a two-stage hybrid with parallel

machines only at the first stage, and suggested a

branch and bound algorithm that minimizes total

tardiness, and Lee et al. [13] considered multi-stage

hybrid flowshops and suggested a bottleneck-focused

heuristic in which a schedule for a bottleneck stage is

first constructed and then schedules for other stages

are constructed based on the schedule for the

bottleneck.

This paper focuses on a scheduling problem in two-

stage hybrid flow shops with two or more identical

parallel machines at each stage. The objective is to

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

minimize the number of tardy jobs. Here, a tardy job

is defined as the job whose completion time is greater

than its due date. This objective is important in many

cases since the cost penalty incurred by a tardy job

does not depend on how late it is, but the fact that it is

late. For example, a late job may cause a customer to

switch to another supplier, especially in the just-in-

time production environment [10]. As noted in the

previous research articles, the problem considered in

this paper is an NP-hard problem. This can be easily

seen from the fact that the parallel machine

scheduling problem that minimizes the number of

tardy jobs is NP-hard [6].

The objective of minimizing the number of tardy

jobs is dealt with by Gupta and Tunc [9] that

considers a two-stage hybrid flow shop with only one

machine at the first stage. To solve the problem, they

suggest several heuristic algorithms. Unlike this, we

focus on general two-stage hybrid flow shops in

which two or more machines may exist at each stage

and suggest a branch and bound algorithm that gives

optimal solutions. The methods to obtain lower and

upper bounds are incorporated in the algorithm.

Dominance properties are also derived to reduce the

solution space. To show the performance of the

algorithm, computational experiments are performed

on randomly generated problems, and the results are

reported.

In the next section, the problem considered here is

described in more detail with a mathematical

formulation. The branch and bound algorithm is

presented in Section 3, and the results of

computational test are presented in Section 4. Finally,

Section 5 concludes the paper with a short summary

and discussions on possible extensions.

2. Problem Description

Before describing the problem considered in this

paper, we present a general structure of the multi-

stage hybrid flow shop in Figure 1. In this figure, K

and Mk denote the number of stages and the number

of machines at stage k, respectively. Each job consists

of K operations and the kth operations of the jobs are

processed on stage k. Note that this paper focuses on

the two-stage general hybrid flow shop, i.e., K = 2

and Mk > 1 for k=1, 2. Therefore, each job consists of

two operations. The first operations of all jobs are

processed on one of the machines at the first stage,

and each of the second operations of the jobs can be

processed on one of those at the second stage. Here,

the operations are processed sequentially, without

overlapping between stages.

As stated earlier, there are two types of decision

variables in the hybrid flow shop scheduling

problem: (a) allocating jobs to machines at each

stage; and (b) sequencing the jobs assigned to each

machine. The objective is to minimize the number of

tardy jobs, and can be represented as

∑
=

n

i
iT

1

)(δ ,

Where Ti = max{0, Ci – di}, i.e., tardiness of job i,

and δ(a) = 1 if a > 0, and 0 otherwise. Here, Ci and di

denote the completion time and the due date of job i,

respectively. Note that the completion times of jobs

depend on the two decision variables, allocation and

sequencing, and the problem considered here is to

determine them for the objective of minimizing the

number of tardy jobs in the two-stage hybrid flow

shop.

In this paper, we consider the deterministic and

static version of the problem. That is, all jobs are

ready for processing at time zero, and job descriptors,

processing times and due dates, are deterministic and

given in advance. It is assumed that the parallel

machines at each stage are identical. Other

assumptions made in the problem considered here

are: (a) there is a buffer of an infinite capacity

between the two stages; (b) no job can be split or pre-

emptied; (c) all machines are available at the

beginning of the scheduling horizon; (d) each

machine can process only one job at a time and each

job can be processed on one machine; and (e)

machine breakdowns are not considered.

The problem can be formulated as an integer

programming model. The notations used are

summarized below.

Parameters

N number of jobs

Mk number of identical machines in stage k

pik processing time of job i at stage k,

(i = 1,…, N, k = 1, 2)

di due date of job i

V large number

Decision variables

xijmk =1 if job j is processed directly after job i

on machine m in stage k, and 0 otherwise

x0jmk =1 if job j is the first job to be processed on

machine m in stage k, and 0 otherwise

xi0mk =1 if job i is the last job to be processed on

machine m in stage k, and 0 otherwise

cik completion time of job i at stage k,

1

n jobs

…

…

 parallel
machines

Stage 1

2

M1

1

…

Stage 2

2

M2

…

 parallel
machines

1

…

Stage K

2

Mk

 parallel
machines

Figure 1. Hybrid flow shop: a schematic view

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

Now, the integer programming model is given as

follows. Note that the model is a modified one of that

of Guinet and Solomon [7].

Minimize ∑
=

N

i
iT

1

)(δ

subject to

1
1 0

=∑ ∑
=

≠
=

kM

m

N

ji
i

ijmkx for all j and k (1)

1
1
0 ≤∑

=

N

j
jmkx for all m and k (2)

0
00

=− ∑∑

≠
=

≠
=

N

hj
j

hjmk

N

hi
i

ihmk xx

for all h, m and k (3)

Vxpcc
kM

m
ijmkjkikjk ⋅










−++≥ ∑

=1
1

for all j, k and i = 0, …N (4)

jkkjjk pcc +≥ −1, for all j and k (5)

},0max{ 2 iii dcT −= for all i (6)

}1,0{)(∈iTδ for all i (7)

}1,0{∈ijmkx for all i, j, k and m (8)

0≥jkc for all j and k (9)

00 =jc for all j and 001 =c (10)

The objective function denotes minimizing the

number of tardy jobs. Constraint (1) ensures that each

job is processed once and once only at each stage.

Constraint (2) specifies that each machine must be

assigned to one job at most. Constraints (3) ensure

that each job has a job predecessor and a job

successor on its machine. The job completion time at

each machine is represented by constraints (4) and (5).

Constraint (6) specifies the tardiness of each job and

is used to specify the number of tardy jobs. Finally,

the other constraints (7), (8), (9) and (10) are the

conditions on the decision variables.

3. Branch and Bound Algorithm

This section presents the branch and bound (B&B)

algorithm suggested in this paper. First, we explain

the branching scheme that generates all possible

solutions. Then, the methods to obtain the lower and

upper bounds are presented. As in the ordinary B&B

algorithm, each node of the B&B tree can be deleted

from further consideration (fathomed) if the lower

bound at the node is greater than or equal to the

incumbent solution value, i.e., the smallest upper

bound of all nodes obtained so far. Dominance

properties are also suggested to reduce the solution

space.

3.1 Branching strategy

To generate all possible solutions in the two-stage

hybrid flow shop scheduling, we adopt the idea

suggested by Azizoglu et al. [1] that consider the

problem of minimizing total flow time.

The entire B&B tree consists of two subtrees in

series, each of which represents N! orderings of jobs

for each stage of the two-hybrid flow shop. In the

first subtree, N nodes are branched at the first level, N

– 1 nodes at the second level, and so on. Also, the

second subtree starts from each of the leaf nodes of

the first subtree. That is, N nodes are branched at

level N + 1, N – 1 nodes at the level N + 2, and so on.

In this way, we can generate (N!)
2
orderings of jobs.

Each node of the subtree corresponds to a partial

schedule in the corresponding stage. More

specifically, at each node, a set of jobs can be

specified by going back on the path from that node

toward the root node, and each of these jobs are

allocated and sequenced to the earlier available

machine in sequence. In this way, we can generate all

possible allocation and sequence at each stage since

we consider the regular measure of performance. (See

Azizoglu et al. [1] for more details.) For node

selection (or branching), the depth-first rule is used in

this paper. In this rule, if the current node is not

fathomed, the next node to be considered is its child

node with the smallest index.

Figure 2 shows an example of the B&B tree for a

problem with 3 jobs. It can be seen from the figure

that this method determines the job schedule from the

first to the second stage.

level 1

root node

level 2

level 3

2

3 2

3 2

1 3

2 1 3

3 2

3 2

.

.

.

.

. .
.
.
.
.

Figure 2. Branch and bound tree: example

Subtree
for the first stage

Subtree

for the second stage

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

3.2 Bounding strategy

This subsection presents the methods to obtain the

lower and upper bounds.

Obtaining lower bound

The lower bound suggested in this paper is

computed at each node of the B&B tree. As stated

earlier, each node of the B&B tree corresponds to a

partial schedule and the lower bound is computed by

estimating the smallest (and also infeasible)

completion time of each job at the second stage. To

do this, we use the partial schedule and the jobs not

included in the partial schedule.

Before describing the method, let PSl denote the set

of jobs included in the partial schedule at node l. Two

cases are considered in the computation of the lower

bound.

Case 1: Current node l in the first-stage subtree

In this case, the lower bound at node l is obtained as

NT1 + NT2,

where NT1 is the number of tardy jobs for those in PSl

and NT2 is the number of tardy jobs for those not in

PSl.

First, NT1 is obtained by estimating the smallest

(and also infeasible) completion time of each job at

the second stage. That is, it can be set as





+
<+

=
otherwise,

 if

2

121
2

iT

Tiii
i p

cpc
c

ϕ
ϕ

where φT is ready time of the earliest available

machine at second stage. Note that the smallest

completion time given above is always smaller than

that of the optimal schedule since the delay times are

ignored. Then, the number of tardy jobs NT1 can be

calculated by comparing the smallest completion time

and due date of each job in PSl.

Second, NT2 is obtained by relaxing the hybrid shop

problem to the single machine problem that

minimizes the number of tardy jobs. First, we modify

the processing time of unscheduled job i ∉ PSl at the
second stage as

22
'
2 /Mpp ii = ,

i.e., the job splitting is allowed, and the

corresponding single machine problem is solved

using the optimal algorithm of Moore. (See Moore

[15] for more details.) Then, the sequence of

unscheduled jobs (for i ∉ PSl) is obtained. Finally,
NT2 is calculated by comparing the completion time

and the due date of each job not in PSl.

Note that in this case, NT1 + NT2 can be the lower

bound because it is computed in such a way that each

unscheduled job is completed at the first stage before

its release time at the second stage. Also the single

machine problem is solved using the processing time

divided by the number of parallel machines at the

second stage.

Case 2: Current node l in the second-stage subtree

In this case, the lower bound is also obtained as

NT1 + NT2.

Here, NT1 is obtained using the method suggested in

the first case, i.e., estimating the smallest (and also

infeasible) completion time of each job at the second

stage. On the other hand, NT2 is obtained by

estimating the completion time as

212 iii pcc += for
l

PSi∉ .

Note that in this case, the waiting time of

unscheduled jobs at the second stage, i.e. max{0, ci1-

φT}, is ignored. Therefore, NT1 + NT2 can be the

lower bound. That is, it is always less than the

optimal number of tardy jobs.

Obtaining upper bound

The initial upper bound, i.e. feasible solution value,

is obtained using two priority rules, EDD (earliest

due date) and minimum slack time. Here, the EDD

rule is used at the first stage after modifying the due

date of each job as

2' iii pdd −= ,

and the slack time is defined as.

)(21 iii ppd +−

Note that the initial upper bound is set to the

minimum of those obtained by the two rules. Also,

the upper bound is updated if it is improved at the

leaf nodes of the B&B tree.

3.3. Dominance properties

As stated earlier, the dominance properties are used

to reduce the number of partial schedules that need to

be examined in the search for the optimal schedule.

Two properties are suggested in this paper. Note that

the two dominance properties are checked at each

node of the B&B tree.

The first property, which is given below, specifies

the condition that a job should be positioned last at

the first stage. The proof is omitted here since it is

similar to that of Azizoglu and Kirca [2].

Proposition 1. There exists an optimal schedule in

which job w is processed at final position on any one

of the machines at first stage if

() { }












−+≥ ∑
=

n

i

iiiw pmaxMp
M

'd

1

111
1

1
1

where dw`= dw – pw2.

The second property specifies the condition that

partial schedule σ•i is dominated by σ•j and job i is

tardy job in partial schedule σ•i, Therefore job i

should be positioned last at the first stage. Where σ•i

is a partial schedule obtained by appending job i to

the end of partial schedule σ.

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

Proposition 2. A partial schedule σ•i is dominated by

σ•j for any partial schedule σ, i.e., job i should be

positioned last at the first stage, if pi1 > pj1 and φT +

pi1 > di – pi2. Here, φT is the ready time of the earliest

available machine at the first stage in the partial

schedule σ.

Proof. Let i and j denote unscheduled jobs with

respect to a partial schedule σ at a machine and

c(σ•j)1 denote the completion time of job j at the first

stage in the partial schedule σ•j. Then, two cases

should be considered.

Case1: c(σ•j)1 > dj – pj2

In this case, jobs i and j are both tardy jobs at the

first stage since φT + pi1 > di`. Hence, NT(σ•i) =

NT(σ•j), where NT(•) denotes the number of tardy

jobs in schedule •.

Case2: c(σ•j)1 ≤ dj – pj2

In this case, job j may not be a tardy job, i.e.,

NT(σ•i) ≠ NT(σ•j). Hence, it is better to position job
i to the last position since pi1 > pj1. In other words,

the unscheduled jobs can be moved earlier, which

results in NT(σ•j) ≤ NT(σ•i).

Therefore, the number of tardy jobs for partial

schedule σ•j is less than that of σ•i. This completes

the proof. g

4. Computational Experiments

To show the performance of the B&B algorithm

suggested in this paper, computational tests were

done on randomly generated test problems, and the

results are reported in this section. All algorithms

were coded in C++ and the test was performed on a

workstation with an Intel Xeon processor operating at

3.20 GHz 120 MHz clock speed.

For the test, 960 problems were generated randomly,

i.e., 10 problems for each of 96 combinations of the

number of machines (1, 2, 3 and 4 at the first stage

and 2, 3 and 4 at the second stage), four levels of the

number of jobs (10, 12, 14 and 15), and two levels of

the due date tightness (loose, tight). The processing

times were generated from DU(10, 40), where DU(a,

b) is the discrete uniform distribution with range [a,

b]. Due dates were generated using the method of

Gupta (1998). That is, they were generated from

DU(Pα,Pβ), where α = {0.2, 0.4, 0.6 ,0.8} and β =

{0.2, 0.4, 0.6 ,0.8} with β > α, and

)

()
n/

M/pM/pn

M/pM/p

p
n

i

i

n

i

i

n

i

i

n

i

i






































−+














+








=

∑∑

∑∑

==

==

2

1

2

1

11

2

1

2

1

11

;max1

Note that the parameters α and β (β > α) were set to

{0.6, 0.8} {0.6, 0.8} for the case of loose due dates

and {0.2, 0.4} and {0.2, 0.4} for the case of tight due

dates.

Test results on different problem sizes are

summarized in Table 1 that shows the number of

problems that the B&B algorithm gave the optimal

solutions within 5000 seconds and average CPU

seconds (in parenthesis). It can be seen from the table

that the B&B algorithm gives the optimal solutions

for most test problems. However, the computation

times increase significantly when the number of jobs

increases. Also, the number of machines at each stage

plays an important role in problem difficulties. That

is, the test problems having relatively large number

of machines at the first stage were easier to solve.

This is because our dominance properties consider

the parallel machines at the first stage.

Table1. Performance of the algorithm

(a) Cases of loose due dates

Number of jobs Number of

machines at each

stage 10 12 14 15

M2=2 10(0.5)* 10(8.4) 10(105.3) 9(2269.4)

M2=3 10(0.3) 10(10.6) 10(253.1) 10(1006.9) M1=1

M2=4 10(0.4) 10(14.1) 10(193.7) 9(3014.8)

M2=2 10(0.3) 10(5.3) 10(85.2) 10(956.4)

M2=3 10(0.2) 10(16.2) 10(140.9) 10(1009.1) M1=2

M2=4 10(0.4) 10(7.4) 10(78.6) 10(2983.4)

M2=2 10(0.2) 10(6.6) 10(133.5) 10(1096.4)

M2=3 10(0.5) 10(8.4) 10(91.0) 10(3089.3) M1=3

M2=4 10(0.3) 10(18.3) 10(156.2) 10(2040.6)

M2=2 10(0.2) 10(8.2) 10(163.1) 10(563.4)

M2=3 10(0.3) 10(3.2) 10(289.4) 10(1902.3) M1=4

M2=4 10(0.2) 10(5.1) 10(170.4) 10(2634.5)

* number of problems that the B&B gave the optimal solutions out of 10

problems and CPU seconds (in parenthesis)

(b) Cases of tight due dates

Number of jobs Number of

machines at each

stage 10 12 14 15

M2=2 10(2.8) 10(12.3) 10(585.3) 8(2625.3)

M2=3 10(1.2) 10(10.6) 10(725.3) 8(3025.1) M1=1

M2=4 10(1.1) 10(15.7) 9(663.4) 7(1005.6)

M2=2 10(0.5) 10(6.3) 10(383.3) 9(2006.4)

M2=3 10(0.9) 10(15.8) 10(425.6) 10(3523.2) M1=2

M2=4 10(0.7) 10(13.8) 10(528.9) 9(4019.3)

M2=2 10(0.6) 10(9.5) 10(631.5) 10(1263.4)

M2=3 10(2.0) 10(3.1) 10(226.4) 10(1991.6) M1=3

M2=4 10(1.5) 10(15.3) 10(341.6) 9(2536.1)

M2=2 10(0.9) 10(6.9) 10(163.8) 10(10949.2)

M2=3 10(1.6) 10(17.5) 10(512.3) 10(1697.2) M1=4

M2=4 10(1.3) 10(8.6) 10(226.7) 10(2463.8)

5. Concluding Remarks

The paper considered a two-stage hybrid flow shop

scheduling problem for the objective of minimizing

the number of tardy jobs, and suggested a branch and

bound algorithm that can give the optimal solutions.

The methods to calculate lower and upper bounds are

suggested, and two properties that characterize the

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

optimal solutions were also suggested to reduce the

search space. Test results of computational

experiments showed that the B&B algorithm

suggested in this paper gave the optimal solutions for

moderate-sized problems within a reasonable amount

of computation time.

This research can be extended in several directions.

First, it is needed to develop more efficient

algorithms to solve practical-sized problems. To do

this, it may be necessary to develop heuristic

algorithms, rather than the optimal algorithm Second,

to make the research more practical, the problem

should be extended to the case of general hybrid

flowshops with more than two stages. In this case, the

simulation study may be more applicable. Finally, the

systems with uniform or unrelated parallel machines

at each stage can be a practical extension.

Acknowledgements

This research was supported by Korea Research

Foundation Grant funded by Korean Government

(MOEHRD) (KRF-2005-041-D00893). This grant is

gratefully acknowledged.

References

1. Azizoglu, M., Cakmak, E. and Kondakci, S., 2001, A

flexible flow shop problem with total flow time

minimization. European Journal of Operational

Research 132, 528-538.

2. Azizoglu, M. and Kirca, O., 1998, Tardiness

minimization on parallel machines. International

Journal of Production Economics 55, 163-168.

3. Brah, S. A. and Hunsucker, J. L., 1991, Branch and

bound algorithm for the flow shop with multiple

processors. European Journal of Operational

Research 51, 88-99.

4. Chen, B., 1995, Analysis of classes of heuristics for

scheduling a two-stage flow shop with parallel

machines at on stage. Journal of the Operational

Research Society 46, 231-244.

5. Fouad, R., Abdelhakim, A. and Salah, E. E., 1998, A

hybrid three-stage flowshop problem Efficient

heuristics to minimize makespan. European Journal

of Operational Research 109, 321-329.

6. Garey, M. R. and Johnson, D. S., 1979, A Guide to

the Theory of NP-Completeness. Computers and

Intractability.

7. Guinet, A. G. P. and Solomon M. M., 1996,

Scheduling hybrid flowshops to minimize maximum

tardiness or maximum completion time. International

Journal of Production Research 34, 1643-1654.

8. Gupta, J. N. D. and Tunc, E. A., 1991, Scheduling for

a two-stage hybrid flowshop with parallel machines at

the second stage. International Journal of Production

Research 29, 1480-1502.

9. Gupta, J. N. D. and Tunc, E. A., 1998, Minimizing

tardy jobs in a two-stage hybrid flowshop.

International Journal of Production Research 36,

2397-2417.

10. Ho, J. C. and Chang Y-L., 1995, Minimizing the

number of tardy jobs for m parallel machines.

European Journal of Operational Research 84, 343-

355.

11. Lee, C. Y. and Vairaktarakis, G. L., 1994, Minimizing

makespan in hybrid flow shops. Operations research

letters 16, 149-158.

12. Lee, G. C. and Kim, Y. D., 2004, A branch-and-

bound algorithm for a two-stage hybrid flow shop

scheduling problem minimizing total tardiness.

International Journal of Production Research 42,

4731-4743.

13. Lee, G. C., Kim, Y. D. and Choi, S. W., 2004,

Bottleneck-focused scheduling for a hybrid flow shop.

International Journal of Production Research42, 165-

181.

14. Linn, R. and Zhang, W., 1999, Hybrid flow shop

scheduling, Computers ad Industrial Engineering, 37,

57-61.

15. Moore, J. M., 1968, An n-job, one-machine

sequencing algorithm for minimizing the number

of late jobs. Management Science 15, 102-109.

16. Mourisli, O. and Pochet, Y., 2000, A branch-and-

bound algorithm for the hybrid flow shop.

International Journal of Production Economics 64,

113-125.

17. Tsubone, H., Ohba, M. and Uetake, T., 1996, The

impact of lot sizing and sequencing on manufacturing

performance in a two-stage hybrid flow shop.

International Journal of Production Research 34,

3037-3053.

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

	MAIN

