• Title/Summary/Keyword: Hybrid Composite

Search Result 1,054, Processing Time 0.022 seconds

Design Optimization of Safety Barrier Consisting of Steel Rail and CFRP Post (강재 레일과 CFRP 기둥으로 이루어진 방호울타리의 최적화 설계)

  • Kim, Jung Joong;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2013
  • In this study a hybrid safety barrier system consisting of steel rail and carbon fiber reinforced polymer (CFRP) post is considered. W hile CFRP post is selected for impact energy reflection due to its high strength, steel rail is selected for impact energy absorption due to its high ductility. A numerical model considering the elastoplastic behavior of steel is formulated to simulate the dynamic responses of the hybrid system subject to an impact load. A hybrid roadside guard rail system of steel rail and CFRP post is proposed and analyzed with a case study. The numerical model for the hybrid roadside guard rail system is used to find optimized design of the proposed hybrid system.

Hybrid PSO-Complex Algorithm Based Parameter Identification for a Composite Load Model

  • Del Castillo, Manuelito Y. Jr.;Song, Hwachang;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.464-471
    • /
    • 2013
  • This paper proposes a hybrid searching algorithm based on parameter identification for power system load models. Hybrid searching was performed by the combination of particle swarm optimization (PSO) and a complex method, which enhances the convergence of solutions closer to minima and takes advantage of global searching with PSO. In this paper, the load model of interest is composed of a ZIP model and a third-order model for induction motors for stability analysis, and parameter sets are obtained that best-fit the output measurement data using the hybrid search. The origin of the hybrid method is to further apply the complex method as a local search for finding better solutions using the selected particles from the performed PSO procedure.

Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite

  • Pandey, Harsh Kumar;Agrawal, Himanshu;Panda, Subrata Kumar;Hirwani, Chetan Kumar;Katariya, Pankaj V.;Dewangan, Hukum Chand
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.715-724
    • /
    • 2020
  • The influence on flexural strength of Glass/Epoxy laminated composite curved panels of different geometries (cylindrical, spherical, elliptical, hyperboloid and flat) due to inclusion of nano cenosphere filler examined in this research article. The deflection responses of the hybrid structure are evaluated numerically using the isoparametric finite element technique and modelled mathematically via higher-order displacement structural kinematics. To predict the deflection values, a customised in-house computer code in MATLAB environment is prepared using the higher-order isoparametric formulation. Subsequently, the numerical model validity has been established by comparing with those of available benchmark solution including the convergence characteristics of the finite element solution. Further, a few cenosphere filled hybrid composite are prepared for different volume fractions for the experimental purpose, to review the propose model accuracy. The experimental deflection values are compared with the finite element solutions, where the experimental elastic properties are adopted for the computation. Finally, the effect of different variable design dependent parameter and the percentages of nano cenosphere including the geometrical shapes obtained via a set of numerical experimentation.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

The Structrual Behavior of Eccentrically Loaded Hybrid FRP-Concrete Composite Columns (편심재하된 하이브리드 FRP-콘크리트 합성 기둥의 구조적 특성)

  • Choi, Jin-Woo;Seo, Su-Hong;Park, Joon-Soek;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Pile foundations constructed by the fiber reinforced polymer plastic piles have been used in coastal and oceanic regions in many countries. Generally, fiber reinforced polymer plastic piles are consisted of filament winding FRP which is used to wrap the outside of concrete pile to increase the axial load carrying capacity or pultruded FRP which is located in the core concrete to resist the bending moment arising due to eccentric loading. In this paper, the analytical procedures of hybrid concrete filled FRP tube flexural members are suggested based on the CFT design method. Moreover, the analytical results are compared with the experimental results to obtained by the previous researches. The results of comparison analyses are performed to estimate the accuracy of the analytical procedure for hybrid FRP-concrete composite compression test, members under eccentrical loading.

Reliability Analysis for Composite Laminated Plate Using Hybrid Response Surface Method (복합 반응면 기법을 이용한 복합재 적층판의 신뢰성해석)

  • Lee, Seok-Je;Kim, In-Gul
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.40-47
    • /
    • 2010
  • In this paper, the hybrid response surface method(HRSM) is proposed and examined. Hybrid response surface method calculate a approximate model repeatedly based on MPP coordinates. To verify the performance, probability of failure, MPP(Most Probable failure Point) and reliability index are calculated for nonlinear function and composite laminated plate by using reliability analysis method and compared with results by using typical response surface method(RSM). Probability of failure is calculated under the assumption of the nonlinear limit state equation and given failure criterion. The results of proposed method shows performance improvement in estimating the probability of failure.

Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging

  • Cheng, Xiaoquan;Zhang, Jie;Zhang, Jikui;Liu, Peng;Cheng, Yujia;Xu, Yahong
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.265-272
    • /
    • 2018
  • A detailed study was carried out on the tensile properties of the single-lap joint of a steel panel bolted/bonded to a composite laminate with a flanging. Finite element model (FEM) was established to predict the strength and to analyze the damage propagation of the hybrid joints by ABAQUS/Standard, which especially adopted cohesive elements to simulate the interface between the laminate and adhesive. The strength and failure mode predicted by FEM were in good agreement with the experimental results. In addition, three influence factors including adhesive thickness, bolt preload and bolt-hole clearance were studied. The results show that the three parameters have effect on the first drop load of the load-displacement curve, but the effect of bolt-hole clearance is the largest. The bolt-hole clearance should be avoided for hybrid joints.

Fabrication and Properties of Reaction Squeeze Cast $(Al_2O_3+Si)/Mg$ Hybrid Metal Matrix Composites (반응용탕단조법에 의한 $(Al_2O_3+Si)/Mg$ 하이브리드 금속복합재료의 제조 및 특성평가)

  • Oh, Dong-Hyun;Jeon, Sang-Hyuk;Park, Ik-Min;Cho, Kyung-Mox;Choi, Il-Dong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • In the present study,($10%Al_2O_3+5%Si$)/AZ91 Mg hybrid composite was fabricated using the squeeze casting method. During squeeze casting, Molten Mg was infiltrated into the preform of $10%Al_2O_3+5%Si$ and reaction product of $Mg_2Si$ intermetallic compound was formed by the reaction between molten Mg and Si Powder. Microstructure has been observed and mechanical properties were evaluated for the reaction squeeze cast(RSC) hybrid composite. It was found that Si powder totally reacted with molten Mg to form $Mg_2Si$. Reinforcement($Al_2O_3$) and the reaction product ($Mg_2Si$) are fairly uniformly distributed in Mg Matrix for the squeeze cast hybrid composite. Mechanical Properties were improved with hybridization of reinforcements, namely higher hardness and enhanced wear resistance comparing squeeze cast($15%Al_2O_3$)/AZ91 Mg composite.

  • PDF

Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite (하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구)

  • Kwon, Woo Deok;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.

An Experimental Study on the Structural Behavior of SRC(Steel Reinforced Concrete) Beams (매립형 합성보의 구조족거동에 관한 실험적 연구)

  • 조병완;김영진;박성민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.549-552
    • /
    • 1999
  • Recently, a variety of uses for combined reinforced concrete and steel have been applied in actual construction, which are called hybrid structures. The purpose of the hybrid construction is the high-efficiency of structural behaviors. But the design method of SRC is relatively complicated design method. So, it hasn't detailed design method yet and we are depending upon foreign specifications. In this study, To develop the design method of SRC at the condition of composite behaviors, makes process about major factors that affects the composite behaviors. And we suggested fundamental data of the composite behaviors by experiments.

  • PDF