• Title/Summary/Keyword: Hybrid Analysis

Search Result 3,471, Processing Time 0.037 seconds

Performance Analysis of Type-I Hybrid ARQ System Considering Transmission Delay Time (전송 지연시간을 고려한 Type-I Hybrid ARQ 시스템의 성능 분석)

  • 조치원;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.879-888
    • /
    • 1999
  • A Study on the ARQ scheme of data error control is important for more reliable information transmission. Since performance difference is large by the long transmission delay time in satellite communication, the performances of SR ARQ and conventional type-I hybrid ARQ with fixed code rate are investigated by using the parameters of packet length, channel capacity, BER, and transmission delay time especially. BCH code is used in type-I hybrid ARQ for FEC method. This paper presents the throughput analyses according to such various parameters as BCH code rate, window size, data rate and round-trip delay time. Especially we derive a performance equation of type-I hybrid ARQ with the factor of the transmission delay time using the equation of SAW ARQ. Also, the performance of type-I hybrid ARQ specially considering transmission delay time is analyzed through numerical analysis and computer simulation so we can get a important characteristics variation.

  • PDF

Comparative Analysis of Energy Performance of Hydrothermal, Geothermal Source and Hybrid Heat Pump System According to Internal Heat Load for Office, School and Smart Farm (건축물 용도별 내부 발열부하에 따른 수열원, 지열원 및 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석)

  • Park, Sihun;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.19-30
    • /
    • 2022
  • In this study, comparative analysis of energy performance in Taebaek city, a test area, by applying hydrothermal, geothermal source and hybrid heat pump system to office, school and smart farms with different internal heat loads. The conclusion is as follows. In the load characteristics by use of buildings, it was found that office had a large cooling load compared to heating load, school had a large heating load compared to cooling load, and smart farm had only cooling load year-round. Performance analysis of the heat pump system in office shows that the cooling COP of the hydrothermal source is 5.12% and the heating COP is 3.22% lower based on the geothermal source, the cooling COP of the hybrid is 0.41% higher, and the heating COP is the difference in performance appeared sparsely. The performance analysis of the heat pump system in school showed that the cooling COP of the hydrothermal source was 10.44% and the heating COP 3.22% lower based on the geothermal source, and the performance difference between the hybrid cooling and heating COP was insignificant. Heat pump system performance analysis in smart farm only occurred with cooling load. Based on geothermal sources, the cooling COP of the hydrothermal source was 46% and the cooling COP of the hybrid was 19.65%, respectively.

Prospects of Japan's Electronic Vehicle Market: An Analysis Through Toyota Motors' Hybrid Vehicle Deployment (도요타의 하이브리드 자동차 보급 사례 분석을 통한 일본 전기자동차 시장에 대한 전망)

  • Ko, Woo Li;Kim, Kyunghwan
    • Journal of East Asia Management
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2024
  • About 100 years after the start of mass production by American car maker Ford in 1913, the automobile industry has come to a major transformation in 100 years. In this transformation period, automakers are facing the biggest challenge of converting power sources, the basis of automobiles, from existing internal combustion engines to electric vehicles. Hybrid vehicles have been released in Japan since the late 1990s, and changes in automobile power sources have occurred early. In order to gain global leadership in hybrid vehicles, Japanese automakers and the Japanese government joined forces to promote the growth of the domestic hybrid vehicle market. The government has implemented a policy to substantially subsidize the high price of hybrid cars compared to internal combustion engine cars by providing purchase subsidies and tax benefits to buyers. Toyota has increased its line-up of hybrid cars around the Prius and has further strengthened communication with customers for the sale of hybrid vehicles. As a result of continuing these efforts for about 20 years, the percentage of Japan's hybrid vehicle market in 2022 reached 51% for passenger cars. Recently, each country has been setting and promoting aggressive goals for electric vehicles that require a wider range of physical and institutional infrastructure than hybrid vehicles. This study aims to assess the growth of electric vehicles by looking at the trend of hybrid vehicles and how they've been distributed in the Japanese market.

A Universal Analysis Pipeline for Hybrid Capture-Based Targeted Sequencing Data with Unique Molecular Indexes

  • Kim, Min-Jung;Kim, Si-Cho;Kim, Young-Joon
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.29.1-29.5
    • /
    • 2018
  • Hybrid capture-based targeted sequencing is being used increasingly for genomic variant profiling in tumor patients. Unique molecular index (UMI) technology has recently been developed and helps to increase the accuracy of variant calling by minimizing polymerase chain reaction biases and sequencing errors. However, UMI-adopted targeted sequencing data analysis is slightly different from the methods for other types of omics data, and its pipeline for variant calling is still being optimized in various study groups for their own purposes. Due to this provincial usage of tools, our group built an analysis pipeline for global application to many studies of targeted sequencing generated with different methods. First, we generated hybrid capture-based data using genomic DNA extracted from tumor tissues of colorectal cancer patients. Sequencing libraries were prepared and pooled together, and an 8-plexed capture library was processed to the enrichment step before 150-bp paired-end sequencing with Illumina HiSeq series. For the analysis, we evaluated several published tools. We focused mainly on the compatibility of the input and output of each tool. Finally, our laboratory built an analysis pipeline specialized for UMI-adopted data. Through this pipeline, we were able to estimate even on-target rates and filtered consensus reads for more accurate variant calling. These results suggest the potential of our analysis pipeline in the precise examination of the quality and efficiency of conducted experiments.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Effects of Pre-tension and Additional Half-pin on Fracture Stability in Hybrid External Fixator System (강선의 인장력과 추가 Half pin이 혼성외고정장치 시스템의 안정성에 미치는 영향)

  • 김윤혁;이현근;박원만;오종건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • It is clinically well known that pre-tension of wires increases the fracture stability in ring or hybrid external fixation. In some cases, additional half pin should be necessary to increase the stability when soft tissue impalement occurs during fixation. In this paper, the fracture stability of a hybrid external fixator system with different pre-tension effects and additional half-pins was analysed using FEM to investigate the effects of these pre-tension and half pin on the system stability quantitatively. 3-D finite element models of five different fixator frames were developed using by beam elements. In axial compression analysis, the fracture stiffness was increased maximally 62% as the pre-tension increased. In torsion analysis, in the other hand, there is little variations in the fracture stiffness. Additional half pin increased the system stiffness about 200 %. From the results, proper pre-tension and additional half pin would provide good methods to increase the fracture stability of the hybrid external fixator and provide more surgical options to minimize soft tissue damage at the fracture site.

  • PDF

Design and Analysis of Novel 12/14 Hybrid Pole Type Bearingless Switched Reluctance Motor with Short Flux Path

  • Xu, Zhenyao;Zhang, Fengge;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.705-713
    • /
    • 2012
  • In this paper, a novel 12/14 hybrid pole type bearingless switched reluctance motor (BLSRM) with short flux path and no flux-reversal in the stator is proposed. The proposed BLSRM has separated rotating torque and suspending force poles. Because of independent characteristics between torque and suspending force poles, the torque control can be decoupled from the suspending force control. Due to the short flux path without any reversal flux, compared to the 8/10 hybrid stator pole BLSRM, the output torque is significantly improved and the air-gap is easier to control. Meanwhile, basic design principle for the proposed structure is described. To verify the proposed structure, finite element method (FEM) is employed to get characteristics of the proposed structure and 8/10 hybrid stator pole BLSRM. Based on the analysis, a prototype of the proposed BLSRM is designed and manufactured. Finally, validity of the proposed structure is verified by the experimental results.

Analysis of generalized progressive hybrid censored competing risks data

  • Lee, Kyeong-Jun;Lee, Jae-Ik;Park, Chan-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In reliability analysis, it is quite common for the failure of any individual or item to be attributable to more than one cause. Moreover, observed data are often censored. Recently, progressive hybrid censoring schemes have become quite popular in life-testing problems and reliability analysis. However, a limitation of the progressive hybrid censoring scheme is that it cannot be applied when few failures occur before time T. Therefore, generalized progressive hybrid censoring schemes have been introduced. In this article, we derive the likelihood inference of the unknown parameters under the assumptions that the lifetime distributions of different causes are independent and exponentially distributed. We obtain the maximum likelihood estimators of the unknown parameters in exact forms. Asymptotic confidence intervals are also proposed. Bayes estimates and credible intervals of the unknown parameters are obtained under the assumption of gamma priors on the unknown parameters. Different methods are compared using Monte Carlo simulations. One real data set is analyzed for illustrative purposes.

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.