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Hybrid capture-based targeted sequencing is being used increasingly for genomic variant profiling in tumor patients. Unique 
molecular index (UMI) technology has recently been developed and helps to increase the accuracy of variant calling by 
minimizing polymerase chain reaction biases and sequencing errors. However, UMI-adopted targeted sequencing data 
analysis is slightly different from the methods for other types of omics data, and its pipeline for variant calling is still being 
optimized in various study groups for their own purposes. Due to this provincial usage of tools, our group built an analysis 
pipeline for global application to many studies of targeted sequencing generated with different methods. First, we generated 
hybrid capture-based data using genomic DNA extracted from tumor tissues of colorectal cancer patients. Sequencing 
libraries were prepared and pooled together, and an 8-plexed capture library was processed to the enrichment step before 
150-bp paired-end sequencing with Illumina HiSeq series. For the analysis, we evaluated several published tools. We focused 
mainly on the compatibility of the input and output of each tool. Finally, our laboratory built an analysis pipeline specialized 
for UMI-adopted data. Through this pipeline, we were able to estimate even on-target rates and filtered consensus reads for 
more accurate variant calling. These results suggest the potential of our analysis pipeline in the precise examination of the 
quality and efficiency of conducted experiments.
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Introduction

The development of next-generation sequencing (NGS) 
has brought remarkable growth in our understanding of 
human genome variants through comprehensive character-
ization. On top of that, various efforts have been made to find 
associations of these understandings with diseases, including 
cancers [1]. 

Particularly, detecting various mutations, including 
somatic mutations, is essential to comprehend the cancer 
genome [2]. However, this is one of the most challenging 
parts in studying cancer, because somatic mutations are 
sporadic among healthy cells [3], and therefore, variants 
with low allelic fractions are hard to track down [4]. 
Fortunately, targeted sequencing has been a great support to 

overcome these difficulties. Compared to whole-genome 
sequencing, targeted sequencing has several advantages in 
many aspects: high coverage data could be generated at a 
more reasonable price [5]; low-frequency variants could be 
detected with this ultra-deep sequencing [6]; and different 
types of mutations, such as single-nucleotide variants, short 
indels (insertion and deletions), structure variations, and 
copy number alterations, can be examined via targeted 
sequencing [7]. Therefore, many laboratories in both 
academia and the medical industry are making efforts to 
develop their own gene panels with various sizes. 

However, the next predicament is the analysis of the 
targeted sequencing data, since the variants revealed in the 
data are hard to discriminate from false-positive errors. In 
detail, innate sequencing errors and early cycle polymerase 
chain reaction (PCR) biases during library amplification or 
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Fig. 1. Analysis pipeline. Tools and 
methods used in different file gene-
ration (fastq to input files for variant 
calling) are shown in the flow chart.

target enrichment could be considered super or rare 
mutations during the variant calling process. To overcome 
this erroneous algorithm, unique molecular index (UMI) 
technology was recently developed [8]. UMIs, as 8–9-bp 
random oligonucleotides, barcode a single DNA molecule 
and index replicates generated from the same DNA 
templates during PCR amplification. Several proof-of-concept 
studies have proven the error correction mechanism of the 
UMI [6, 9-13], and they revealed that PCR biases and 
sequencing errors were compensated during consensus 
sequence extraction from reads with the same UMI tags [6]. 
Nevertheless, analyzing data with UMI is still a tedious task 
[8]. In other words, some UMI-analyzing and variant calling 
tools have limitations in their broad application to the data 
generated from different hybrid capture platforms or other 
types of sequencing data, such as single-cell sequencing. In 
addition, most files from each tool are not compatible with 
the tools in different pipelines. For example, a recently 
developed analysis tool, named smCounter2, is a variant 
caller and an analysis pipeline tool package for targeted 
sequencing data with UMIs. Purportedly, this tool is 
specialized to call low-frequency variants. However, the 
usage of smCounter2 is restricted only to the data generated 
by the QIAGEN QIAseq DNA target enrichment kit [6]. 

In this study, to build a versatile analysis pipeline to apply 
to various types of hybrid capture-based targeted sequencing, 
our laboratory evaluated various types of analysis tools, like 
Fulcrum genomics (fgbio, https://github.com/fulcrum-
genomics/fgbio), Picard (http://broadinstitute.github.io/ 
picard), and the Genome Analysis Tool Kit (GATK) [14]. We 
put our effort into optimizing the pipeline so as to not make 
discrepancies between the files and enable easier inter-
pretation of the results. Furthermore, we show an example 
of how targeted sequencing experiments can be investigated 
for their quality from the analysis and how we could take 
points from the results analysis as feedback for the 

experiment.  

Methods
Sample preparation

Tumor tissues were dissected from 6 different colorectal 
cancer patients. Tumor samples were labeled from 1T to 7T, 
and sample 4T was omitted. NA24385 of the HapMap 
project and AccuRef Quan-Plex NGS Reference Standard 
Genomic DNA (cat# ARF-1001G-1; AccuRef, Milpitas, CA, 
USA) were used as positive controls. 

Probe design for hybrid capture 

For hybrid capture, all coding sequences of 46 genes and 
non-coding sequences of some of those genes were targeted. 
Pre-designed and customized probe sets were manufactured 
by Integrated DNA Technologies (IDT, Coralville, IA, USA). 

Targeted sequencing data generation

To analyze UMI-adopted targeted sequencing data, we 
generated targeted sequencing libraries. During library 
generation, UMI sequences were integrated, along with the 
P5 sequencing adapter. Eight libraries were pooled together 
into one 1.7-mL microtube, and this 8-plex pooled library 
was then hybridized using IDT xGen LockDown pre- 
designed/custom probes. Targeted sequencing data of 
hybrid-capture library were generated using HiSeq series by 
150-bp paired-end sequencing. 

Data processing

Using BclToFastq, the .bcl file was processed and divided 
into fastq files of read 1 (R1), read 2 (R2), and UMI. To 
generated unmapped bam files, R1.fastq and R2.fastq files 
were processed using FastqToBam (Fulcrum Genomics/ 
fgbio, v0.7.0) (Fig. 1). Unmapped.bam file was then sorted 
using SortSam (Picard) to sort files compatible with 
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Table 1. Read counts and on-target rates (%)

Samples Total reads Raw coverage On-target (%) On-target (%) 
(FLANK)

On-target 
coverage

On-target 
coverage (FLANK)

NA24385 111,609,098 55,805 36.3 49 20,257 27,344
AccuRef 105,917,538 52,959 37.2 49.9 19,701 26,427
1T 101,998,476 50,999 36.3 48.8 18,513 24,888
2T 115,406,592 57,703 36.2 48.7 20,888 28,101
3T 139,988,838 69,994 37 49.7 25,898 34,787
5T 120,756,350 60,378 37 49.7 22,340 30,008
6T 110,765,272 55,383 37 49.7 20,492 27,525
7T 109,743,358 54,872 37 49.7 20,303 27,271

Total raw reads and calculated coverage of raw data are shown in the first and second columns of the table, respectively. After 
examining on-target (%) with or without flanking regions, on-target coverage values were calculated in the last two columns. NA24385 
and AccuRef were used as positive control samples. 

Fig. 2. Grouped histogram of on-target rate (%). On-target rate was
expressed using the stacked histogram. The x-axis shows 6 tumor
samples and one positive control. The upper part of each bar shows
on-target % when the target region is enlarged with additional 
50-bp flanking parts on both sides of each region. 

downstream tools. UMI information was annotated via 
AnnotateBamWithUmis (fgbio). To use MergeBamAlignment 
(Picard) to generate UMI-annotated mapped bam files, 
SamToFastq (Picard) generated fastq files containing UMI 
information. Burrows-Wheeler Aligner (BWA-mem, v0.1.17) 
aligned reads to the hg38 reference genome [15]. The 
unmapped bam files (output of Tool#3) and the aligned bam 
file (the output of BWA-mem) were merged via 
MergeBamAlignment (Picard). Mapped.bam file was then 
grouped by GroupReadsByUmi (fgbio) according to its 
RX-tagged UMI sequence. UMI family information was then 
used for grouping and calling consensus reads via 
CallMolecularConsensusReads (fgbio). FilterConsensusReads 
(fgbio) filters consensus reads to make bam files suitable for 
further variant calling. As CallMolecularConsensusReads 
and FilterConsensusReads generated unmapped bam files, 
converting bam files to fastq files, the mapping and merging 
steps were repeated for the variant calling in the following 
step. The overall pipeline is shown in Fig. 1.

Quality check

UmiAwareMarkDuplicateWithMateCigar (Picard) counted 
duplicates among the raw reads to estimate duplicate rates. 
As this tool is still under development, we recommend a 
regular check with the developers on further validation. To 
calculate on-target rates (%), CollectHsMetrics (Picard) is 
used to generate HsMetrics. By expanding 100 bp of 
chromosome coordinates (start/end site) in target.bed, 
on-target %, including flanking regions, was calculated using 
the same tool. To calculate the read coverage, the following 
equation was used: Coverage = Read length(bp) × The 
number of reads/Genome size (bp). According to the 
manufacturer, the genome size refers to the target size of the 
probes.

Results 

First, total read counts were counted by either Picard tools 
or fgbio tools. An 8-plexed hybrid capture library generated 
100 Gbp data, and approximately 15 Gbp data were 
generated from each sample. Considering the fact that the 
target genome size is 0.3 Mbp, the read coverages were 
calculated as 50,000× to 70,000×, as shown in Table 1. As 
on-target rate (%) represents how much the probes attach to 
the target genomic regions and as calculating on-target rates 
(%) refers to the efficiency of experiments, we examined the 
on-target rate (%). We were able to get 37% on-target rate, 
average (Table 1, Fig. 2). On-target rates were slightly 
increased when target regions were expanded to flanking 
regions (＋100 bp). In addition, each sample showed a 
similar on-target %, and this may suggest that the 
hybridization step of targeted sequencing was processed 
with an even amount of each library. 

Before removing sequence duplicates, we estimated 
duplicate read counts via UmiAwareMarkDuplicateWith 
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Fig. 3. Duplicate rate. Duplicate read ratio of each sample. Two 
positive controls are shown in the first two samples. The average 
duplicate rate is 0.73.

Fig. 4. Comparison of sequencing coverage from raw reads to 
filtered reads. The read coverage calculated from the read counts
are shown with bar plots.

MateCigar (Picard). We could measure duplicate rates of 
＞70% of the reads (Fig. 3). Considering the fact that the 
percent duplicate increases as the sequencing coverage rises 
[16], an average 73% of duplicates indicates that the 
targeting efficiency of the probes was high in high-coverage 
sequencing. In addition, as we were aware that an excess 
number of PCR cycles during target enrichment brings 
severe biases [17], we assumed that the number of PCR 
cycles during enrichment was moderate. Although duplicate 
reads were not discarded in further steps, by checking 
duplicate rates, we confirmed that the number of PCR cycles 
during library preparation and target enrichment was 
adequate. In addition, we were able to verify the ability to 
examine the efficiency of our experiments through data 
analysis. 

We then estimated the number of consensus reads to be 
ready for more accurate variant calling. Through this 
filtering, we were able to get the consensus coverage down to 
one-sixth of the raw coverage (Fig. 4). According to the 
filtering methods, the consensus sequences of each read 
from different UMI families were called for scanning 
variants. In addition, by calling and filtering consensus 
reads, the probability of errors was considered, according to 
the algorithm of the tool. Furthermore, the reads containing 
Ns or the reads with low confidence were filtered out for 
highly confident variant calling. 

Discussion

In this study, we built an analysis pipeline for targeted 
sequencing data generated based on the hybrid-capture 
method. As UMI-adopted targeted sequencing data are 

notorious for their novelty and complexity, we mainly 
focused on finding tools and optimizing methods for the 
analysis. 

Our data show an on-target rate of 37%, and there is little 
variation among samples. This may suggest that almost 
equal amounts of libraries of each sample were used for 
hybridization. However, because 37% is relevantly low for 
hybridization efficiency, the estimation of the on-target rates 
shows that still there is room for improvement. 

The reason why on-target rate is important is that by 
estimating on-target rates and further upgrades of protocols, 
the quality of targeted hybrid-capture sequencing could be 
improved. In detail, protocol modifications during 
hybridization steps could possibly bring about an increase of 
on-target rates. For example, a slightly excessive amount of 
input DNA or target probes can increase the off-target effects 
during hybridization. Furthermore, inconsistent temperature 
or slightly higher/lower temperature than the proper 
temperature could bring about larger off-target effects than 
expected. 

With respect to the pipeline, when using CallMolecular 
ConsensusReads, insertion and deletion errors are not 
considered in the consensus model. Therefore, realignment 
steps using other methods, such as IndelRealigner (GATK, 
v4.0.2.1), should be integrated for better and more precise 
analysis for identification of short indels. Furthermore, even 
though we optimized the tools and customized python codes 
for analyzing UMI data, there are still many tools that could 
be used in one analysis pipeline. We are still trying to 
minimize irrelevant steps to simplify the process. 

In summary, we have built an analysis pipeline specialized 
for UMI-adopted hybrid-capture-based data. Given the fact 
that the precision medicine era has been coming lately and 
that targeted sequencing and UMI technology help to 
comprehensively understand the genomewide status of 
cancer patients, this report suggests that the quality of the 
experiment can be examined precisely and efficiently by this 
pipeline, and our laboratory sees its positive potential in 
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being widely used for studies in various clinical fields. 
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