• Title/Summary/Keyword: Hybrid Algorithm

Search Result 1,916, Processing Time 0.056 seconds

Application of genetic algorithm to hybrid fuzzy inference engine (유전 알고리즘에 의한 Hybrid 퍼지 추론기의 구성)

  • 박세희;조현찬;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.863-868
    • /
    • 1992
  • This paper presents a method on applying Genetic Algorithm(GA), which is a well-known high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilizes Sugeno's hybrid inference method, which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the optimal parameters in the FLC. The proposed approach will be demonstrated using 2 d.o.f robot manipulator to verify its effectiveness.

  • PDF

Optimal Time Slot Assignment Algorithm for Combined Unicast and Multicast Packets

  • Lee, Heyung-Sub;Joo, Un-Gi;Lee, Hyeong-Ho;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.172-175
    • /
    • 2002
  • This paper considers a packet-scheduling algorithm for a given combined traffic of unicast and multicast data packets and proposes a hybrid router with several dedicated buses for multicast traffic. Our objective is to develop a scheduling algorithm that minimizes schedule length for the given traffic in the hybrid router. We derive a lower bound and develop an optimal solution algorithm for the hybrid router.

  • PDF

Real-time Hybrid Path Planning Algorithm for Mobile Robot (이동로봇을 위한 실시간 하이브리드 경로계획 알고리즘)

  • Lee, Donghun;Kim, Dongsik;Yi, Jong-Ho;Kim, Dong W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • Mobile robot has been studied for long time due to its simple structure and easy modeling. Regarding path planning of the mobile robot, we suggest real-time hybrid path planning algorithm which is the combination of optimal path planning and real-time path planning in this paper. Real-time hybrid path planning algorithm modifies, finds best route, and saves calculating time. It firstly plan the route with real-time path planning then robot starts to move according to the planned route. While robot is moving, update the route as the best outcome which found by optimal path planning algorithm. Verifying the performance of the proposed method through the comparing real-time hybrid path planning with optimal path planning will be done.

Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation (매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘)

  • Chung, Won-Jee;Ju, Ji-Hun;Lee, Kee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

Design and Implementation of a Hybrid Spatial Reasoning Algorithm (혼합 공간 추론 알고리즘의 설계 및 구현)

  • Nam, Sangha;Kim, Incheol
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.601-608
    • /
    • 2015
  • In order to answer questions successfully on behalf of the human contestant in DeepQA environments such as 'Jeopardy!', the American quiz show, the computer needs to have the capability of fast temporal and spatial reasoning on a large-scale commonsense knowledge base. In this paper, we present a hybrid spatial reasoning algorithm, among various efficient spatial reasoning methods, for handling directional and topological relations. Our algorithm not only improves the query processing time while reducing unnecessary reasoning calculation, but also effectively deals with the change of spatial knowledge base, as it takes a hybrid method that combines forward and backward reasoning. Through experiments performed on the sample spatial knowledge base with the hybrid spatial reasoner of our algorithm, we demonstrated the high performance of our hybrid spatial reasoning algorithm.

Improvement of Hybrid Vision Correction Algorithm for Water Resources Engineering Problem (수자원공학 문제 적용을 위한 Hybrid Vision Correction Algorithm의 개량)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.196-196
    • /
    • 2021
  • 상수관망은 많은 관을 통해 물의 수요가 있는 곳으로 물을 공급해주는 역할을 하는 사회기반 시설물이다. 상수관망 설계의 요점은 두 가지로 구분할 수 있다. 첫 번째 요점은 다양한 종류의 관배치로 인한 상수관망 설계안의 많은 경우의 수이다. 두 번째 요점은 상수관망 내 절점의 최저 요구수압 등의 제약조건이다. 두 가지 요점이 있는 상황에서 상수관망 설계비용의 최소화를 위한 상수관망 최적설계는 많은 계산이 요구된다. 많은 계산이 요구되기 때문에 상수관망 최적설계에 최적화 기법을 적용할 수 있다. 본 연구에서 상수관망 최적설계를 위해 적용된 최적화 기법은 Hybrid Rate(HR)를 개선한 Hybrid Vision Correction Algorithm(HVCA)이다. HVCA는 Vision Correction Algorithm(VCA)을 기반으로 추가적인 전역탐색을 실행하는 Centralized Global Search(CGS)의 적용 및 자가적응형 매개변수인 Hybrid Rate(HR)를 적용하여 사용성과 성능을 개량한 알고리즘이다. HVCA의 기존 HR은 선형적으로 증가하는 형태이다. 선형적으로 증가하는 HR로 인해 HVCA는 최적해 탐색과정에서 지역해에 빠지는 문제가 발생하였다. HVCA의 문제를 해결하기 위해 HR을 비선형적으로 증가하는 형태로 개량하였다. HR이 개량된 HVCA를 수자원공학 문제인 상수관망 최적설계 문제에 적용하여 결과를 비교하였다. 적용결과 HR이 개량된 HVCA가 기존의 HVCA보다 낮은 설계 비용을 나타내었다. 상수관망 최적설계 적용결과를 바탕으로 HR이 개량된 HVCA는 상수관망 최적설계 이외의 수자원공학 문제에도 적용가능할 것이다.

  • PDF

Hybrid Scheduling Algorithm based on DWDRR using Hysteresis for QoS of Combat Management System Resource Control

  • Lee, Gi-Yeop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • In this paper, a hybrid scheduling algorithm is proposed for CMS(Combat Management System) to improve QoS(Quality of Service) based on DWDRR(Dynamic Weighted Deficit Round Robin) and priority-based scheduling method. The main proposed scheme, DWDRR is method of packet transmission through giving weight by traffic of queue and priority. To demonstrate an usefulness of proposed algorithm through simulation, efficiency in special section of the proposed algorithm is proved. Therefore, We propose hybrid algorithm between existing algorithm and proposed algorithm. Also, to prevent frequent scheme conversion, a hysteresis method is applied. The proposed algorithm shows lower packet loss rate and delay in the same traffic than existing algorithm.

Tag Anti-Collision Algorithms in Passive and Semi-passive RFID Systems -Part II : CHI Algorithm and Hybrid Q Algorithm by using Chebyshev's Inequality-

  • Fan, Xiao;Song, In-Chan;Chang, Kyung-Hi;Shin, Dong-Beom;Lee, Heyung-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.805-814
    • /
    • 2008
  • Both EPCglobal Generation-2 (Gen2) for passive RFID systems and Intelleflex for semi-passive RFID systems use probabilistic slotted ALOHA with Q algorithm, which is a kind of dynamic framed slotted ALOHA (DFSA), as the tag anti-collision algorithm. A better tag anti-collision algorithm can reduce collisions so as to increase the efficiency of tag identification. In this paper, we introduce and analyze the estimation methods of the number of slots and tags for DFSA. To increase the efficiency of tag identification, we propose two new tag anti-collision algorithms, which are Chebyshev's inequality (CHI) algorithm and hybrid Q algorithm, and compare them with the conventional Q algorithm and adaptive adjustable framed Q (AAFQ) algorithm, which is mentioned in Part I. The simulation results show that AAFQ performs the best in Gen2 scenario. However, in Intelleflex scenario the proposed hybrid Q algorithm is the best. That is, hybrid Q provides the minimum identification time, shows the more consistent collision ratio, and maximizes throughput and system efficiency in Intelleflex scenario.

Design of Auto-Tuning Fuzzy Logic Controllers Using Hybrid Genetic Algorithms (하이브리드 유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 설계)

  • Ryoo, Dong-Wan;Kwon, Jae-Cheol;Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.126-129
    • /
    • 1997
  • This paper propose a new hybrid genetic algorithm for auto-tunig auzzy controller improving the performance. In general, fuzzy controller used pre-determine d moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controller, using hybrid genetic algorithms. The object of the proposed algorithm is to promote search efficiency by overcoming a premature convergence of genetic algorithms. Hybrid genetic algorithm is based on genetic algorithm and modified gradient method. Simulation results verify the validity of the presented method.

  • PDF

Optimization of the fuzzy model using the clustering and hybrid algorithms (클러스터링 및 하이브리드 알고리즘을 이용한 퍼지모델의 최적화)

  • Park, Byoung-Jun;Yoon, Ki-Chan;Oh, Sung-Kwun;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2908-2910
    • /
    • 1999
  • In this paper, a fuzzy model is identified and optimized using the hybrid algorithm and HCM clustering method. Here, the hybrid algorithm is carried out as the structure combined with both a genetic algorithm and the improved complex method. The one is utilized for determining the initial parameters of membership function, the other for obtaining the fine parameters of membership function. HCM clustering algorithm is used to determine the confined region of initial parameters and also to avoid overflow phenomenon during auto-tuning of hybrid algorithm. And the standard least square method is used for the identification of optimum consequence parameters of fuzzy model. Two numerical examples are shown to evaluate the performance of the proposed model.

  • PDF