• Title/Summary/Keyword: Humidity of laboratory

Search Result 255, Processing Time 0.026 seconds

Biological Investigation on Conservational Environment of Collections (유물의 보존환경에 대한 생물학적 조사 연구)

  • Lee, Myung-Hye;Lee, Kyu-Shik;Han, Sung-Hee;Ahn, Hee-Kyun
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.96-112
    • /
    • 1992
  • We made biological investigation on the conservational environment of collections in the Ho Am museum. Annual average temperature and relative humidity outside the museum were $11. 0∼11.7^{\circ}C$ and 64.8∼74.4% respectivey. On the other hand, average annual temperature and relative humidity inside the main storage were $19.1∼20.1^{\circ}C$ and 53.0∼63.4%. We isolated fungi and classified into 8 genus 13species fungi and selected four fungi having high cellulotic activity such as Alternaria brassicae KCPRI 9202, Aspergillus niger KCPRI 9205, Aspergillusversicolor KCPRI 9206, Penicillium adametzi KCPRI 9208. These fungi were examined on the posibility of collections being damaged under current conservation al environment in the museum. KCPRI 9208 was non-tonophilic fungus and other were facutative tonophilic fungi. These showed maximal cellulotic activity of enzymeshaking culture at pH 5.0∼5.5 for 4 and 5 days. In proprtion to the period damaged, cellulase activity for paper damaged artifically with growing worse of material. As are sult cellulotic activity by fungi increased.

  • PDF

Studies on the Rearing method of the Tick, Haemaphysalis longicornis (Haemaphysalis longicornis 진드기의 사육방법에 관한 연구)

  • Cha Hyeon-seong;Lee Joo-Mook;Kwon Oh-deog;Chae Joon-seok
    • Journal of Veterinary Clinics
    • /
    • v.10 no.1
    • /
    • pp.101-109
    • /
    • 1993
  • This study was attempted to develop a rearing method of the tick(Haemaphysalis longicornis) at the laboratory in winter. The rearing conditions for ticks in winter were summarized as follows; Even in the winter, under controlled Incubator on 25~3$0^{\circ}C$ and 90~95%, temperature and humidity, respectively, it is possible to rear the ticks normally as on summer. in the usual laboratory room temperature and humidity, 20~$25^{\circ}C$ and 51 ~77%. In the ticks collected in summer, the life span of the ticks, from hatching to death, was 91~129(112.8$\pm$15.2) days in the lagoratory, and the number of the oviposited eggs from a tick were about 1,680~2,460 and the hatching rate of the oviposited eggs was about 95(92~98)%. The life span of the ticks which were reared in the laboratory in winter was 89-138(112.2$\pm$21.1) days, and the number of the oviposited eggs from the tick were about 1,382~2,674 and the hatching rate of them was about 89.5(87~92)%. In the rearing of the tick at the laboratory, the dogs, rabbits and mice were able to use the hosts for the tick. The proper temperature to feed the ticks on the cattle in the cold season was obtained by $Hokalong^{\circledR}$ which were attached on the out side of sac which covered bovine ear where attached ticks.

  • PDF

Climate Factors and Their Effects on the Prevalence of Rhinovirus Infection in Cheonan, Korea

  • Lim, Dong Kyu;Jung, Bo Kyeung;Kim, Jae Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.425-431
    • /
    • 2021
  • The use of big data may facilitate the recognition and interpretation of causal relationships between disease occurrence and climatic variables. Considering the immense contribution of rhinoviruses in causing respiratory infections, in this study, we examined the effects of various climatic variables on the seasonal epidemiology of rhinovirus infections in the temperate climate of Cheonan, Korea. Trends in rhinovirus detection were analyzed based on 9,010 tests performed between January 1, 2012, and December 31, 2018, at Dankook University Hospital, Cheonan, Korea. Seasonal patterns of rhinovirus detection frequency were compared with the local climatic variables for the same period. Rhinovirus infection was the highest in children under 10 years of age, and climatic variables influenced the infection rate. Temperature, wind chill temperature, humidity, and particulate matter significantly affected rhinovirus detection. Temperature and wind chill temperature were higher on days on which rhinovirus infection was detected than on which it was not. Conversely, particulate matter was lower on days on which rhinovirus was detected. Atmospheric pressure and particulate matter showed a negative relationship with rhinovirus detection, whereas temperature, wind chill temperature, and humidity showed a positive relationship. Rhinovirus infection was significantly related to climatic factors such as temperature, wind chill temperature, atmospheric pressure, humidity, and particulate matter. To the best of our knowledge, this is the first study to find a relationship between daily temperatures/wind chill temperatures and rhinovirus infection over an extended period.

A Real-Time Surveillance System for Vaccine Cold Chain Based o n Internet of Things Technology

  • Shao-jun Jiang;Zhi-lai Zhang;Wen-yan Song
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.394-406
    • /
    • 2023
  • In this study, a real-time surveillance system using Internet of Things technology is proposed for vaccine cold chains. This system fully visualizes vaccine transport and storage. It comprises a 4G gateway module, lowpower and low-cost wireless temperature and humidity collection module (WTHCM), cloud service software platform, and phone app. The WTHCM is installed in freezers or truck-mounted cold chain cabinets to collect the temperature and humidity information of the vaccine storage environment. It then transmits the collected data to a gateway module in the radiofrequency_physical layer (RF_PHY). The RF_PHY is an interface for calling the bottom 2.4-GHz transceiver, which can realize a more flexible communication mode. The gateway module can simultaneously receive data from multiple acquisition terminals, process the received data depending on the protocol, and transmit the collated data to the cloud server platform via 4G or Wi-Fi. The cloud server platform primarily provides data storage, chart views, short-message warnings, and other functions. The phone app is designed to help users view and print temperature and humidity data concerning the transportation and storage of vaccines anytime and anywhere. Thus, this system provides a new vaccine management model for ensuring the safety and reliability of vaccines to a greater extent.

Comparison of Dynamic Sorption and Hygroexpansion of Wood by Different Cyclic Hygrothermal Changing Effects

  • Yang, Tiantian;Ma, Erni
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.191-203
    • /
    • 2016
  • To investigate the dynamic sorptive and hygroexpansive behaviors of wood by different cyclic hygrothermal changing effects, poplar (populus euramericana Cv.) specimens, were exposed to dynamic sorption processes where relative humidity (RH) and temperature changed simultaneously in sinusoidal waves at 75-45% and $5-35^{\circ}C$ (condition A) and where RH changed sinusoidally at 75-45% but temperature was controlled at $20^{\circ}C$ (condition B), both for three cyclic periods of 1, 6, and 24 h. Moisture and dimensional changes measured during the cycling gave the following results: Moisture and transverse dimensional changes were generally sinusoidal. Moisture and dimensional amplitude increased with increasing cyclic period but all were lower for thicker specimens. The amplitude ratio of condition A to condition B ranged from 1.0 to 1.6 with the maximum value of 1.57 occurring at the shortest cyclic period, not as much as expected. T/R increased as cyclic period increased or specimen thickness decreased. T/R from condition B was weaker than that from condition A. Sorption and swelling hysteresis existed in both conditions. Sorption hysteresis was negatively related to cyclic period but in positive correlation with specimen thickness. Sorption hysteresis was found more obvious in condition B, while moisture sorption coefficient and humidity expansion coefficient showed the opposite results.

Enhancement of Virus-induced Gene Silencing in Tomato by Low Temperature and Low Humidity

  • Fu, Da-Qi;Zhu, Ben-Zhong;Zhu, Hong-Liang;Zhang, Hong-Xing;Xie, Yuan-Hong;Jiang, Wei-Bo;Zhao, Xiao-Dan;Luo, Yun-Bo
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.153-160
    • /
    • 2006
  • Virus-induced gene silencing (VIGS) is an attractive reverse-genetics tool for studying gene function in plants. We showed that silencing of a phytoene desaturase (PDS) gene is maintained throughout TRV-PDS-inoculated tomato plants as well as in their flowers and fruit and is enhanced by low temperature ($15^{\circ}C$) and low humidity (30%). RT-PCR analysis of the PDS gene revealed a dramatic reduction in the level of PDS mRNA in leaves, flowers and fruits. Silencing of PDS results in the accumulation of phytoene, the desaturase substrate. In addition, the content of chlorophyll a, chlorophyll b and total chlorophyll in the leaves of PDS-silenced plants was reduced by more than 90%. We also silenced the LeEIN2 gene by infecting seedlings, and this suppressed fruit ripenning. We conclude that this VIGS approach should facilitate large-scale functional analysis of genes involved in the development and ripening of tomato.

Exposure Level of Airborne Bacteria in the University Laboratories in Seoul, Korea

  • Hwang, Sung-Ho;Yoo, Kyong-Nam;Park, Ji-Ho;Park, Dong-Uk;Yoon, Chung-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.355-361
    • /
    • 2009
  • This study evaluated the bacterial concentrations and affecting factors at the laboratories of a university in Seoul, Korea. Thirty-three samples of total airborne bacteria (TAB) and eighteen samples of gram negative bacteria (GNB) were collected from both microbiology laboratories (7) and chemistry laboratories (6). GM (GSD) of TAB and GNB concentrations were 194 (2.52) $cfu/m^3$, 24 (4.1) $cfu/m^3$, respectively. TAB concentrations in the chemical laboratories (GM (GSD): 193 (2.0) $cfu/m^3$) were not significantly different from those in microbial laboratories (GM (GSD): 202 (2.7) $cfu/m^3$, (p>0.05)). GM (GSD) of TAB concentrationsat the top of sink, the center of laboratory, and the front of ventilation ventilation device within laboratories, 182 (3.2) $cfu/m^3$, 217 (2.2) $cfu/m^3$, 176 (2.4) $cfu/m^3$, respectively, were not significantly different (p=0.48). Related factors were measured such as temperature, relative humidity, floor of laboratory, number of persons and laboratory area. TAB concentrations were significantly related to temperature (r=0.36, p<0.05), and the floor of laboratory and temperature were also significantly related (r=0.49, p<0.001). However, other factors such as relative humidity, number of persons and laboratory area did not show any significant relationship with TAB concentrations (p>0.05). TAB concentrations were affected significantly by cleaning frequency (p<0.001) and floor of laboratory (p<0.05). There was also a significant difference (p<0.01) between TAB indoor concentrations and TAB outdoor concentrations. However, other factors such as general ventilation did not affect TAB concentrations (p>0.05) in this study.

Optimized Station to Estimate Atmospheric Integrated Water Vapor Levels Using GNSS Signals and Meteorology Parameters

  • Beldjilali, Bilal;Benadda, Belkacem
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1172-1178
    • /
    • 2016
  • The atmospheric meteorology parameters of the earth, such as temperature, pressure, and humidity, strongly influence the propagation of signals in Global Navigation Satellite Systems (GNSSs). The propagation delays associated with GNSS signals can be modeled and explained based on the atmospheric temperature, pressure, and humidity, as well as the locations of the satellites and receivers. In this paper, we propose an optimized and simplified low cost GNSS base weather station that can be used to provide a global estimate of the integrated water vapor value. Our algorithm can be used to measure the zenith tropospheric delay based on the measured propagation delays in the received signals. We also present the results of the data measurements performed at our station located in the Tlemcen region of Algeria.

ANN Modeling of a Gas Sensor

  • Baha, H.;Dibi, Z.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.493-496
    • /
    • 2010
  • At present, Metal Oxide gas Sensors (MOXs) are widely used in gas detection because of its advantages, including high sensitivity and low cost. However, MOX presents well-known problems, including lack of selectivity and environment effect, which has motivated studies on different measurement strategies and signal-processing algorithms. In this paper, we present an artificial neural network (ANN) that models an MOX sensor (TGS822) used in a dynamic environment. This model takes into account dependence in relative humidity and in gas nature. Using MATLAB interface in the design phase and optimization, the proposed model is implemented as a component in an electronic simulator library and accurately expressed the nonlinear character of the response and that its dependence on temperature and relative humidity were higher than gas nature.

Investigation on Hermeticity of Liquid Crystal Polymer Package for MEMS Based Safety Device (MEMS 기반 안전 소자에 대한 액정 폴리머 패키지의 밀폐도 연구)

  • Choi, Jinnil;Kim, Yong-Kook;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.287-290
    • /
    • 2015
  • Liquid crystal polymer (LCP) is a thermoplastic polymer with superior mechanical and thermal properties. In addition, its characteristics include very low water absorption rate and possibility to apply bonding process under low temperature. In this study, LCP is utilized as a packaging material for a microelectronic system (MEMS) based safety device with suggestion of a low temperature packaging process. Highly sensitive and stable capacitive type humidity sensor is fabricated to investigate hermeticity of the packaged MEMS device.