• Title/Summary/Keyword: Humidity control

Search Result 1,153, Processing Time 0.029 seconds

Development of Dehumidifier for Protected Horticulture (시설원예용 제습기 개발)

  • Yon K.S.;Kang G.C.;Kang Y.K.;Ryou Y.S.;Kim Y.J.;Paek Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.110-113
    • /
    • 2005
  • Relative humidity of air In the greenhouse has to be maintained at 70 to 80 percents to provide a better growth condition of crops. To control relative humidity of air in the greenhouse, a dehumidifier functioning by refrigeration cycle was designed and manufactured in this study. And, results of its performance test in the greenhouse site were reported. The developed dehumidifier has separated condenser and evaporator in the heat exchanger part in order to increase dehumidifying capacity at a low temperature condition. When the conditions of incoming air into the dehumidifier were temperature of $15\~25^{\circ}C$ and relative humidity of $0\~95\%$, quantity of condensed water per hour, ie, dehumidification rate was $4.7\~7.0\;kg/hr$. Relative humidity difference was not greater than 5 percents at various locations in the greenhouse due to proper distributing of dehumidified air through vinyl duct. Thermal energy output from the developed dehumidifier was about 8,5000 kcal/hr that was 7 percents of maximum greenhouse heating load of 10 a.

Effects of Storage Temperature and Humidity on Germinability and Longevity of Primed Tobacco Seeds

  • Min, Tai-Gi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.321-324
    • /
    • 2001
  • Tobacco seeds (Nicotiana tabacum L. cv KF109) were primed in the polyethylene glycol 6000(PEG) solution and then stored at 5 and $25^{\circ}C$ under 40, 60 and 80% relative humidity (RH) conditions for six months. The effect of storage temperature and humidity on mean germination time ($T_{50}$), longevity and germination of the primed tobacco seeds were compared. Untreated seeds (control) stored at $5^{\circ}C$ showed high germinability throughout the entire storage period and humidity, and a decline in germinability showed after 6 months at 60% RH and after 3 months at 80% RH when stored at $25^{\circ}C$, Primed seeds retained high germinability until 6 months at 60% RH and 3 months at 80% RH when stored at $5^{\circ}C$ but showed a significant decline in germinability after 3 months at 40% RH, and 1 months at 60% and 80% RH, respectively when stored at $25^{\circ}C$, Primed seeds were completely lost viability when stored at $25^{\circ}C$ under 60% RH for 6 months and under 80% RH for 3 months.

  • PDF

Impact of SAPHIR Data Assimilation in the KIAPS Global Numerical Weather Prediction System (KIAPS 전지구 수치예보모델 시스템에서 SAPHIR 자료동화 효과)

  • Lee, Sihye;Chun, Hyoung-Wook;Song, Hyo-Jong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.141-151
    • /
    • 2018
  • The KIAPS global model and data assimilation system were extended to assimilate brightness temperature from the Sondeur $Atmosph{\acute{e}}rique$ du Profil $d^{\prime}Humidit{\acute{e}}$ Intertropicale par $Radiom{\acute{e}}trie$ (SAPHIR) passive microwave water vapor sounder on board the Megha-Tropiques satellite. Quality control procedures were developed to assess the SAPHIR data quality for assimilating clear-sky observations over the ocean, and to characterize observation biases and errors. In the global cycle, additional assimilation of SAPHIR observation shows globally significant benefits for 1.5% reduction of the humidity root-mean-square difference (RMSD) against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analysis. The positive forecast impacts for the humidity and temperature in the experiment assimilating SAPHIR were predominant at later lead times between 96- and 168-hour. Even though its spatial coverage is confined to lower latitudes of $30^{\circ}S-30^{\circ}N$ and the observable variable is humidity, the assimilation of SAPHIR has a positive impact on the other variables over the mid-latitude domain. Verification showed a 3% reduction of the humidity RMSD with assimilating SAPHIR, and moreover temperature, zonal wind and surface pressure RMSDs were reduced up to 3%, 5% and 7% near the tropical and mid-latitude regions, respectively.

Cooling Efficiency of Low Pressure Compressed Air Fogging System in Naturally Ventilated Greenhouses (저압 에어포그 시스템을 설치한 온실의 냉방효율)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo;Ko, Gi-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • In order to derive the efficient utilization of low pressure compressed air fogging system, cooling efficiencies with control types were analyzed through cooling experiments in tomato greenhouses. The control types were set up with temperature control, humidity control, temperature and humidity control, and time control. It showed that the cooling effects were 0.7 to $3.3^{\circ}C$ on average and maximum of 4.3 to $7.0^{\circ}C$, the humidification effects were 3.5 to 13.5 % on average and maximum of 14.3 to 24.4 %. Both the cooling and humidification effect were the highest in the time control method. The cooling efficiency of the air fogging system was not high with 8.3 to 27.3 % on average. However, the cooling efficiency of 24.6 to 27.3 % which appears from the time control is similar to the cooling efficiency of high pressure fogging system experimented in Japan. The air fogging system is operated by low pressure, but its efficiency is similar to high pressure. We think because it uses compressed air. From this point of view, we suggest that the air fogging system can get the cooling efficiency of similar levels to that of high pressure fogging system and it will have an advantage from clogging problem of nozzle etc.

Development of Fog Cooling Control System and Cooling Effect in Greenhouse (온실 포그 냉방 제어시스템 개발 및 냉방효과)

  • Park, Seok Ho;Moon, Jong Pil;Kim, Jin Koo;Kim, Seoung Hee
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.265-276
    • /
    • 2020
  • This study was conducted to provide a basis for raising farm income by increasing the yield and extending the cultivation period by creating an environment where crops can be cultivated normally during high temperatures in summer. The maximum cooling load of the multi-span greenhouse with a floor area of 504 ㎡ was found to be 462,609 W, and keeping the greenhouse under 32℃ without shading the greenhouse at a high temperature, it was necessary to fog spray 471.6 L of water per hour. The automatic fog cooling control device was developed to effectively control the fog device, the flow fan, and the light blocking device constituting the fog cooling system. The fog cooling system showed that the temperature of the greenhouse could be lowered by 6℃ than the outside temperature. The relative humidity of the fog-cooled greenhouse was 40-80% during the day, about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The relative humidity of the fog cooling greenhouse during the day was 40-80%, which was about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The yield of cucumbers in the fog-cooled greenhouse was 1.8 times higher in the single-span greenhouse and two times higher in the multi-span greenhouse compared to the control greenhouse.

Occurrence of White Rust and Growth of Chrysanthemum 'Baekma' by Control of Relative Humidity with Night Ventilation and Heating in the Greenhouse (국화 '백마'의 시설재배에서 야간 환기와 난방에 의한 상대습도 조절에 따른 흰녹병 발생과 생육)

  • Yoo, Yong Kweon;Roh, Yong Seung;Nam, Byung Cheol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.845-859
    • /
    • 2016
  • This study was conducted to examine the effect of nighttime ventilation and heating on changes in temperature and humidity, the occurrence of white rust, and growth of standard chrysanthemum (Dendranthema grandiflorum) 'Baekma' in a greenhouse. For the ventilation treatments, the mean nighttime humidity in the control greenhouse, which had a closed side window, was higher (94.5%), but the humidity in the natural and natural+fan ventilation treatments was lower (74.3% and 72.8%, respectively). The rate of occurrence of white rust at 34 days after treatment was 100, 98.3, 75.6, and 43.3% for the control, fan ventilation, natural ventilation, and natural+fan ventilation treatments, respectively. The number of infected leaves and telia were the lowest in the natural+fan ventilation treatment compared with the other treatments. The growth of the chrysanthemum 'Baekma' was significantly suppressed in the control because of the occurrence of white rust and high humidity, while plant height, number of leaves, stem diameter, and fresh weight were the greatest in the natural+fan ventilation treatment. For the heating treatments, the mean nighttime temperature of the control (RH 95% heating), which was heating and held at 95% humidity, was $18.4^{\circ}C$, while the temperature of the heating treatment, which was held at 70% relative humidity (RH 70% heating) was $25.8^{\circ}C$. The rate of occurrence of white rust (34.4%), number of infected leaves (0.9), and telia (1.0) were the lowest in the RH 70% heating treatment compared with the other heating conditions. Also, the RH 70% heating treatment showed the best growth in terms of plant height, stem diameter, number of leaves, and fresh weight. Therefore, the natural+fan ventilation and RH 70% heating treatments were effective for the control of white rust and the growth of standard chrysanthemum 'Baekma' in a greenhouse.

Purgative Effect of Jechun-Jun(Jichuan-Jian) and Add or Omit Herbs in Rat (제천전(濟川煎)과 약물(藥物) 가감(加減)이 흰쥐의 사하작용(瀉下作用)에 미치는 영향(影響))

  • Lee Seung-Hee;Lee Sang-Jun;Park Soo-Yeon;Kim Hong-Yeoul;Park Seong-Kyu
    • Herbal Formula Science
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2002
  • We have examined the purgative effect of three Jechun-jun formulas in sprague dawley(SD) rat. Three jechun-jun formulas were Jechun-jun(Sample I ) and augmented Jechun-jun(Sample II) and augmented Jechun-jun add rhubarb(sample III ). We examined the amount and the humidity of feces in rat. The experimental animals were devided into four groups. as control group and three Jechun-jun (sample I, II, III). We administerd the water extract of sample I, II, III to rat per oral for 8days long. After every 24hours measured the amount of wet feces from rats in metabolic cage. Humidity rate of feces from rat was at first measure wet feces for 24hours (W) and measure dried feces (W1) and then we consider W-W1 as humidity. High humidity rate means constipation changes into moistening stool. The amount of wet feces and humidity rate of feces in rats were increased in sample I, II, III. Sample I has highest humidity rate of feces. so showed strong moistening effect. Sample II has mild effect in treating constipation. sample III has most amount of wet feces. in conclusion Jechun-jun has an effect of moistening stool. and augmented Jechun-jun add rhubarb has strong purgative effect.

  • PDF

Study on the energy-saving constant temperature and humidity machine operating characteristics (에너지 절감형 항온항습기 운전 특성에 관한 연구)

  • Cha, Insu;Ha, Minho;Jung, Gyeonghwan
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2016
  • The heat recovery system that was applied in this study, is the energy-saving type that can produce the maximum cooling capacity less power in use. In order to have a more precise control function the temperature and humidity of the constant temperature and humidity machine, control algorithm is applied to designed a fuzzy PID controller, and the outside air compensation device (air-cooled) demonstrated excellent ability to dehumidify the moisture, $-20^{\circ}C$ in winter. High efficiency and the low-noise type sirocco fan operate quitely and designed to fit the bottom-up and top-down in accordance with the characteristics of equipment. as a result of experiment data, the conversion efficiency is 95% or more, power recovery time is within 5sec, stop delay time is within 30sec, pump down time is 10sec, pump delay time is 5sec, heating delay time is 5sec, temperature deviation is ${\pm}2^{\circ}C$ (cooling deviation: $2^{\circ}C$, Heating deviation : $2^{\circ}C$), humidity deviation is a ${\pm}5%$ (humidification deviation 3.0%, dehumidification deviation 3.0%). Recently, ubiquitous technology is important. so, the constant temperature and humidity machine designed to be able to remotely control to via the mobile phone, and more scalable to support MMI software and automatic interface. Further, the life of the parts and equipment is extended by the failure.

An Estimation of Cooling Load for Control of Ice Storage System (빙축열 시스템의 제어를 위한 냉방부하 예측)

  • Yoo, Seong-Yeon;Han, Seung-Ho;No, Kwan-Jong;Lee, Je-Myo;Kang, Tae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.205-210
    • /
    • 2005
  • Ice storage system stores cold energy using ice, which is used for cooling on next day. Ice storage system is the effective cooling system that uses cheep electric energy during a night, and also suppresses the peak load of electricity. In this study, the normalized temperature, relative humidity and specific humidity are analyzed using the weather data for past five years in order to estimate the cooling load for the control of ice storage system. The calculated cooling loads show fairly good agreement with the measured data of model hospital, especially at the outdoor design temperature of $25^{\circ}C$.

  • PDF

Development of an Architecture Monitoring System Using Wireless Sensor Network (무선 센서네트워크를 이용한 건축물 모니터링 시스템 구현)

  • Chang, Hyung-Jun;Kim, Beom-Soo;Kong, Young-Bae;Park, Gwi-Tae;Shim, II-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.568-573
    • /
    • 2007
  • Environmental information (temperature, humidity, vibration, $CO_2$, gas leakage, etc.) of building is an essential item to manage and monitor a building. For intelligent building, it is necessary to get temperature and illumination information to save energy and crack information to prevent structural problems. Moreover, temperature and gas leakage information to alarm a tire precaution, or humidity information to maintain comfortable environment. However, there have not been many researches on systems for gathering environmental information and building maintenance due to high costs. In this paper, wireless sensor network technology is applied to collecting building environmental information. Wireless sensor network is one of the latest issues and has low-power consumption, low-cost, self-configuration features.