• Title/Summary/Keyword: Human-robot interface

Search Result 150, Processing Time 0.025 seconds

Development of Command Signal Generating Method for Assistive Wearable Robot of the Human Upper Extremity (상지 근력지원용 웨어러블 로봇을 위한 명령신호 생성 기법 개발)

  • Lee, Hee-Don;Yu, Seung-Nam;Lee, Seung-Hoon;Jang, Jae-Ho;Han, Jung-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 2009
  • This paper proposes command signal generating method for a wearable robot using the force as the input signal. The basic concept of this system pursues the combination of the natural and sophisticated intelligence of human with the powerful motion capability of the robot. We define a task for the command signal generation to operate with the human body simultaneously, paying attention to comfort and ease of wear. In this study, we suggest a basic exoskeleton experimental system to evaluate a HRI(Human Robot Interface), selecting interfaces of arm braces on both wrists and a weight harness on the torso to connect the robot and human. We develop the HRI to provide a command for the robot motion. It connects between the human and the robot with the multi-axis load-cell, and it measures the relative force between the human and the robot. The control system calculates the trajectory of end-effector using this force signal. In this paper, we verify the performance of proposed system through the motion of elbow E/F(Extension/Flexion), the shoulder E/F and the shoulder Ab/Ad (Abduction/Adduction).

Robot Mobile Control Technology Using Robot Arm as Haptic Interface (로봇의 팔을 햅틱 인터페이스로 사용하여 로봇의 이동을 제어하는 기술)

  • Jung, Yu Chul;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • This paper proposed the implementation of haptic-based robot which is following a human by using fundamental sensors on robot arms without additional sensors. Joints in the robot arms have several motors, and their angles can be read out by these motors when a human pushes or pulls the robot arms. So these arms can be used as haptic sensors. The implemented robot follows a human by interacting with robot arms and human hands, as a human follows a human by hands.

A Brain-Computer Interface Based Human-Robot Interaction Platform (Brain-Computer Interface 기반 인간-로봇상호작용 플랫폼)

  • Yoon, Joongsun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7508-7512
    • /
    • 2015
  • We propose a brain-machine interface(BMI) based human-robot interaction(HRI) platform which operates machines by interfacing intentions by capturing brain waves. Platform consists of capture, processing/mapping, and action parts. A noninvasive brain wave sensor, PC, and robot-avatar/LED/motor are selected as capture, processing/mapping, and action part(s), respectively. Various investigations to ensure the relations between intentions and brainwave sensing have been explored. Case studies-an interactive game, on-off controls of LED(s), and motor control(s) are presented to show the design and implementation process of new BMI based HRI platform.

A Study on the Practical Human Robot Interface Design for the Development of Shopping Service Support Robot (쇼핑 서비스 지원 로봇 개발을 위한 실체적인 Human Robot Interface 디자인 개발에 관한 연구)

  • Hong Seong-Soo;Heo Seong-Cheol;Kim Eok;Chang Young-Ju
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.81-90
    • /
    • 2006
  • Robot design serves as the crucial link between a human and a robot, the cutting edge technology. The importance of the robot design certainly will be more emphasized when the consumer robot market matures. For coexistence of a human and a robot, human friendly interface design and robot design with consideration of human interaction need to be developed. This research extracts series of functions in need which are consisted of series of case studies for planning and designing of 'A Shopping Support Robot'. The plan for the robot is carried out according to HRI aspects of Design and the designing process fellows. Definite results are derived by the application of series of HRI aspects such as gestures, expressions and sound. In order to verify the effectiveness of application of HRI aspects, this research suggests unified interaction that is consisted of motion-capture, animation, brain waves and sound between a human and a robot.

  • PDF

Game Platform and System that Synchronize Actual Humanoid Robot with Virtual 3D Character Robot (가상의 3D와 실제 로봇이 동기화하는 시스템 및 플랫폼)

  • Park, Chang-Hyun;Lee, Chang-Jo
    • Journal of Korea Entertainment Industry Association
    • /
    • v.8 no.2
    • /
    • pp.283-297
    • /
    • 2014
  • The future of human life is expected to be innovative by increasing social, economic, political and personal, including all areas of life across the multi-disciplinary skills. Particularly, in the field of robotics and next-generation games with robots, by multidisciplinary contributions and interaction, convergence between technology is expected to accelerate more and more. The purpose of this study is that by new interface model beyond the technical limitations of the "human-robot interface technology," until now and time and spatial constraints and through fusion of various modalities which existing human-robot interface technologies can't have, the research of more reliable and easy free "human-robot interface technology". This is the research of robot game system which develop and utilizing real time synchronization engine linking between biped humanoid robot and the behavior of the position value of mobile device screen's 3D content (contents), robot (virtual robots), the wireless protocol for sending and receiving (Protocol) mutual information and development of a teaching program of "Direct Teaching & Play" by the study for effective teaching.

Robot vision interface (로보트와 Vision System Interface)

  • 김선일;여인택;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.101-104
    • /
    • 1987
  • This paper shows the robot-vision system which consists of robot, vision system, single board computer and IBM-PC. IBM-PC based system has a great flexibility in expansion for a vision system interfacing. Easy human interfacing and great calculation ability are the benefits of this system. It was carried to interface between each component. The calibration between two coordinate systems is studied. The robot language for robot-vision system was written in "C" language. User also can write job program in "C" language in which the robot and vision related functions reside in the library.side in the library.

  • PDF

Systemic Development of Tele-Robotic Interface for the Hot-Line Maintenance (활선 작업을 위한 원격 조종 인터페이스 개발)

  • Kim Min-Soeng;Lee Ju-Jang;Kim Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1217-1222
    • /
    • 2004
  • This paper describes the development of tele-robotic interface for the hot-line maintenance robot system. One of main issues in designing human-robot interface for the hot-line maintenance robot system is to plan the control procedure for each part of the robotic system. Another issue is that the actual degree of freedom (DOF) in the hot-line maintenance robot system is much greater than that of available control devices such as joysticks and gloves in the remote-cabin. For this purpose, a virtual simulator, which includes the virtual hot-line maintenance robot system and the environment, is developed in the 3D environment using CAD data. It is assumed that the control operation is done in the remote cabin and the overall work process is observed using the main-camera with 2 DOFs. For the input device, two joysticks, one pedal, two data gloves, and a Head Mounted Display (HMD) with tracker sensor were used. The interface is developed for each control mode. Designed human-interface system is operated using high-level control commands which are intuitive and easy to understand without any special training.

Vision-based Human-Robot Motion Transfer in Tangible Meeting Space (실감만남 공간에서의 비전 센서 기반의 사람-로봇간 운동 정보 전달에 관한 연구)

  • Choi, Yu-Kyung;Ra, Syun-Kwon;Kim, Soo-Whan;Kim, Chang-Hwan;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.143-151
    • /
    • 2007
  • This paper deals with a tangible interface system that introduces robot as remote avatar. It is focused on a new method which makes a robot imitate human arm motions captured from a remote space. Our method is functionally divided into two parts: capturing human motion and adapting it to robot. In the capturing part, we especially propose a modified potential function of metaballs for the real-time performance and high accuracy. In the adapting part, we suggest a geometric scaling method for solving the structural difference between a human and a robot. With our method, we have implemented a tangible interface and showed its speed and accuracy test.

  • PDF