• 제목/요약/키워드: Human-robot interaction

검색결과 342건 처리시간 0.024초

LQG/LTR을 이용한 Haptic Interface의 강인제어 (Robust Control of a Haptic Interface Using LQG/LTR)

  • 이상철;박헌;이수성;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.757-763
    • /
    • 2002
  • A newly designed haptic interface enables an operator to control a remote robot precisely. It transmits position information to the remote robot and feeds back the interaction force from it. A control algorithm of haptic interface has been studied to improve the robustness and stability to uncertain dynamic environments with a proposed contact dynamic model that incorporates human hand dynamics. A simplified hybrid parallel robot dynamic model fur a 6 DOF haptic device was proposed to from a real time control system, which does not include nonlinear components. LQC/LTR scheme was adopted in this paper for the compensation of un-modeled dynamics. The recovery of the farce from the remote robot at the haptic interface was demonstrated through the experiments.

Control of Humanoid Robots Using Time-Delay-Estimation and Fuzzy Logic Systems

  • Ahn, Doo Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권1호
    • /
    • pp.44-50
    • /
    • 2020
  • For the requirement of accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Because of the complexity of humanoid robot dynamics, the TDC (time-delay control) is practical because it does not require a dynamic model. However, there occurs a considerable error due to discontinuous non-linearities. To solve this problem, the TDC-FLC (fuzzy logic compensator) is applied to humanoid robots. The applied controller contains three factors: a TDE (time-delay estimation) factor, a desired error dynamic factor, and FLC to suppress the TDE error. The TDC-FLC is easy to execute because it does not require complicated humanoid dynamic calculations and the heuristic fuzzy control rules are intuitive. TDC-FLC is implemented on the whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the TDC-FLC for humanoid robots.

기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구 (A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning)

  • 조성현;권우경
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.169-176
    • /
    • 2020
  • This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.

인간과의 안전한 상호 작용을 고려한 휴머노이드 조인트 모듈 개발 (Development of Humanoid Joint Module for Safe Human-Robot Interaction)

  • 오연택
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.264-271
    • /
    • 2014
  • In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.

네트워크 기반 로봇의 개발 현황 및 업체 요구 사항 (Development Status and Industrial Requirements for Network-based Robots)

  • 박광현;이관우;최병욱;조흥재;남궁휘문;박진우;오상록;서일홍
    • 로봇학회논문지
    • /
    • 제2권2호
    • /
    • pp.196-204
    • /
    • 2007
  • In this paper, we are looking for requirements of software, hardware and application for use in network-based robots and also directions in building standardization and research activities by reviewing technical status of the robot industries developing robots. The questions are including awareness of RUPI(Robot Unifies Platform Initiative) activities, target market and applications, hardware specifications, software development technologies, and HRI(Human Robot Interaction). The RUPI committee creates standard and drives implementation software for network-based robots through industrial requirements as like of the results. Many robots have been developed and launched services based on RUPI 1.0 standards. Based on this achievement we are expanding RUPI standard to include thin and thick client robots. The results also show that which one is important and urgent technology in the sense of industrial robotic business.

  • PDF

센서리스 협동로봇의 직관적인 교시를 위한 직교공간 직접교시 (Cartesian Space Direct Teaching for Intuitive Teaching of a Sensorless Collaborative Robot)

  • 안국현;송재복
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.311-317
    • /
    • 2019
  • Direct teaching is an essential function for collaborative robots for easy use by non-experts. For most robots, direct teaching is implemented only in joint space because the realization of Cartesian space direct teaching, in which the orientation of the end-effector is fixed while teaching, requires a measurement of the end-effector force. Thus, it is limited to the robots that are equipped with an expensive force/torque sensor. This study presents a Cartesian space direct teaching method for torque-controlled collaborative robots without either a force/torque sensor or joint torque sensors. The force exerted to the end-effector is obtained from the external torque which is estimated by the disturbance observer-based approach with the friction model. The friction model and the estimated end-effector force were experimentally verified using the robot equipped with joint torque sensors in order to compare the proposed sensorless approach with the method using torque sensors.

궤적 생성 반복 학습을 통한 소프트 액추에이터 제어 연구 (Iterative Learning Control of Trajectory Generation for the Soft Actuator)

  • 송은정;구자춘
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.35-40
    • /
    • 2021
  • As the robot industry develops, industrial automation uses industrial robots in many parts of the manufacturing industry. However, rigidity-based conventional robots have a disadvantage in that they are challenging to use in environments where they grab fragile objects or interact with people because of their high rigidity. Therefore, researches on soft robot have been actively conducted. The soft robot can hold or manipulate fragile objects by using its compliance and has high safety even in an atypical environment with human interaction. However, these advantages are difficult to use in dynamic situations and control by the material's nonlinear behavior. However, for the soft robot to be used in the industry, control is essential. Therefore, in this paper, real-time PD control is applied, and the behavior of the soft actuator is analyzed by providing various waveforms as inputs. Also, Iterative learning control (ILC) is applied to reduce errors and select an ILC type suitable for soft actuators.

로봇의 비언어적 즉시성에 대한 사례연구 (A Case Study on the Nonverbal Immediacy of the Robot)

  • 정성미;신동희;구지향
    • 한국콘텐츠학회논문지
    • /
    • 제15권7호
    • /
    • pp.181-192
    • /
    • 2015
  • 비언어적 즉시성은 친밀감을 증대시키고 인터랙션을 활성화하는 등 대인 간 커뮤니케이션 상황에서 중요한 역할을 수행한다. 본 연구는 인간 로봇 상호작용 연구에서 논의되어 온 다양한 비언어적 행동들을 비언어적 즉시성이라는 개념으로 묶고, 이들이 어떻게 로봇에 대한 사람의 인지에 영향을 미치는지 파악하고자 사례 연구를 수행하였다. 그 결과 비언어적 즉시성의 요소들은 보다 활발한 언어적인 피드백을 동반할 때 대화의 쌍방향성에 영향을 줄 수 있는 것으로 나타났다. 또한 낱개의 비언어적 즉시성의 요소들은 그 의미를 강화할 수 있는 다른 채널이 없는 한, 의미의 해석이 일관되게 나타나지 않음을 보여주었다. 그리고 비언어적 즉시성의 요소 중 접촉은 로봇과 유사한 대상을 떠올리는 데에 영향을 미쳤다. 사람들은 대화할 때 사람과 동일한 사회적 규칙을 로봇에게 적용했지만, 자기 노출에 있어서는 로봇에게 더 솔직하다는 것이 드러났다. 이러한 연구 결과는 인간과 로봇이 상호작용하는 상황에서 효과적인 언어적, 비언어적 표현의 구성 원리를 제시한다는 측면에서 시사점을 가진다.

모바일-매니퓰레이터 구조 로봇시스템의 안정한 모션제어에 관한연구 (A Study on Stable Motion Control of Mobile-Manipulators Robot System)

  • 박문열;황원준;박인만;강언욱
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.217-226
    • /
    • 2014
  • Since the world has changed to a society of 21st century high-tech industries, the modern people have become reluctant to work in a difficult and dirty environment. Therefore, unmanned technologies through robots are being demanded. Now days, effects such as voice, control, obstacle avoidance are being suggested, and especially, voice recognition technique that enables convenient interaction between human and machines is very important. In this study, in order to conduct study on the stable motion control of the robot system that has mobile-manipulator structure and is voice command-based, kinetic interpretation and dynamic modeling of two-armed manipulator and three-wheel mobile robot were conducted. In addition, autonomous driving of three-wheel mobile robot and motion control system of two-armed manipulator were designed, and combined robot control through voice command was conducted. For the performance experiment method, driving control and simulation mock experiment of manipulator that has two-armed structure was conducted, and for experiment of combined robot motion control which is voice command-based, through driving control, motion control of two-armed manipulator, and combined control based on voice command, experiment on stable motion control of voice command-based robot system that has mobile-manipulator structure was verified.

인간-로봇 상호작용을 위한 자세가 변하는 사용자 얼굴검출 및 얼굴요소 위치추정 (Face and Facial Feature Detection under Pose Variation of User Face for Human-Robot Interaction)

  • 박성기;박민용;이태근
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.50-57
    • /
    • 2005
  • We present a simple and effective method of face and facial feature detection under pose variation of user face in complex background for the human-robot interaction. Our approach is a flexible method that can be performed in both color and gray facial image and is also feasible for detecting facial features in quasi real-time. Based on the characteristics of the intensity of neighborhood area of facial features, new directional template for facial feature is defined. From applying this template to input facial image, novel edge-like blob map (EBM) with multiple intensity strengths is constructed. Regardless of color information of input image, using this map and conditions for facial characteristics, we show that the locations of face and its features - i.e., two eyes and a mouth-can be successfully estimated. Without the information of facial area boundary, final candidate face region is determined by both obtained locations of facial features and weighted correlation values with standard facial templates. Experimental results from many color images and well-known gray level face database images authorize the usefulness of proposed algorithm.