• 제목/요약/키워드: Human-Error and Human -Error Control

검색결과 282건 처리시간 0.03초

열차 운행 중인 기관사의 각성상태 분석에 관한 연구 (A Study Concerning Analysis of Arousal State of locomotive Engineering During Operating Train)

  • 양희경;이정환;이영재;이재호;임민규;백종현;송용수
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.891-898
    • /
    • 2012
  • The study for the passenger's comfortableness of vehicles and the arousal of car drivers has been done widely. On the other hand, there are few studies for the locomotive engineers. Human error means that the mistakes made by human, recently it receives attention in the field of safety engineering and human engineering. Comparing the operating condition of train with car, because of the simplification of the visual stimulus, the arousal level on the train goes down easily. The arousal level down makes judgement down, the accident risk from human error is getting bigger. In this study, we measured bio-signals(ECG, EDA, PPG, respiration and EEG) from 6 locomotive engineers to evaluate their arousal state while they operated the train. Also we recorded the 3 axes acceleration signal showing the vibration state of train. Also, the existence of tunnels were simultaneously measured. At the station section where the train speed goes down, the size of vector's sum decreases because of reduced vibration. Beta component in EEG tends to increase at the entering point of each station and tunnel. It is due to the arousal reaction and tension growth. The mean SCR(skin conductance response) was more increased in neutral section. As the button control movement (body movement) increases in the neutral section, it is appeared that SCR increase. RR interval tends to gradually increase during train operation for 1 hour 40 minutes. However, It tends to sharply decrease at the stop station because strong concentration needed to stop train on the exact point. The engineer's arousal reaction can be checked through analysing the bio-signal change during train operation. Therefore, if this analysing result is adopted to the sleepiness prevention caution system, it will be useful for the safety train operation.

과수원용 차량의 자율주행을 위한 적외선 측거 장치개발 (Development of Infrared Telemeter for Autonomous Orchard Vehicle)

  • 장익주;김태한;이상민
    • Journal of Biosystems Engineering
    • /
    • 제25권2호
    • /
    • pp.131-140
    • /
    • 2000
  • Spraying operation is one of the most essential in an orchard management and it is also hazardous to human body. for automatic and unmanned spraying , an autonomous travelling vehicle is demanded. In this study, a telemeter was developed using infrared beam which could detect trunks and obstacles measure distance and direction from the vehicle travelling in the orchard. The telemeter system was composed of two infrared LED transmitters and receivers, a beam scanning device for continuous object detection , two rotary encoders for angle detector, and a beam level controller for uneven soil surface. The detected distance and direction signal s were sent to personal computer which made for the system display the angular and distance measurements through I/O board. According to a field test in an apple farm, the system detected up to 10m distance under 12 V of transmitted beam intensity, however, it was recommended that the proper beam transmit intensity be 7 v at the 10 m distance, because of the negative effect to human body at 12 V. The error rate of this system was 0.92 % when the actual distance was compared to measured one. The system was feasible at the small error rate. The developed telemeter system was an important part for autonomous travelling vehicle provided the real time object recognition . A direction control system could be constructed suing the system. It is expected that the system could greatly contribute to the development of autonomous farm vehicle.

  • PDF

인간형 로봇의 지능형 발의 발가락 및 뒤꿈치 힘센서 개발 (Development of Force Sensors of Toes and Heel for Humanoid Robot's Intelligent Foot)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.61-68
    • /
    • 2010
  • In order to let the humanoid robot walk on the uneven terrains, the robot's foot should have the similar structure and function as human's. The intelligent foot should be made up of toes and heel. When it walks on the uneven terrains, the foot's sole senses the force and adjusts foot's position before robot losing his balance. In this paper, the force sensors of robot's intelligent foot for having the similar structure and function like human are developed. The heel 3-axis force/moment sensor and toe force sensors for humanoid robot's intelligent foot is developed, and the characteristic tests of them are carried out. As a result of characteristic test, the interference error of the heel 3-axis force/moment sensor is less than 2.2%. It is thought that the developed force sensors could be used to measure the reaction forces which is applied the toes and the heel of a humanoid robot.

Clinical statistics: five key statistical concepts for clinicians

  • Choi, Yong-Geun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제39권5호
    • /
    • pp.203-206
    • /
    • 2013
  • Statistics is the science of data. As the foundation of scientific knowledge, data refers to evidentiary facts from the nature of reality by human action, observation, or experiment. Clinicians should be aware of the conditions of good data to support the validity of clinical modalities in reading scientific articles, one of the resources to revise or update their clinical knowledge and skills. The cause-effect link between clinical modality and outcome is ascertained as pattern statistic. The uniformity of nature guarantees the recurrence of data as the basic scientific evidence. Variation statistics are examined for patterns of recurrence. This provides information on the probability of recurrence of the cause-effect phenomenon. Multiple causal factors of natural phenomenon need a counterproof of absence in terms of the control group. A pattern of relation between a causal factor and an effect becomes recognizable, and thus, should be estimated as relation statistic. The type and meaning of each relation statistic should be well-understood. A study regarding a sample from the population of wide variations require clinicians to be aware of error statistics due to random chance. Incomplete human sense, coarse measurement instrument, and preconceived idea as a hypothesis that tends to bias the research, which gives rise to the necessity of keen critical independent mind with regard to the reported data.

선박운항시스템 자동화와 안전의 연관성에 관한 연구 (A Study on the Relationship of Ship Automation System and Safety)

  • 김비아;이재식;오진석
    • 한국안전학회지
    • /
    • 제22권6호
    • /
    • pp.69-73
    • /
    • 2007
  • The recent huge maritime casualties and their environmental impacts showed that human error in ship navigation is one of the primary causes leading to accidents. In order to reduce maritime accidents and human errors in ship navigation, it is very important and urgent to improve the skills of navigators and develop advanced navigation support system for ship operations. For example, a SCMS(Ship Control and Management System), INS(Integrated Navigation System) and PCS(propulsion Control System) which are considered as a ship automation system was operated in ship. Furthermore, the most recent automation ships collision incidents warn us that only making automation ships alone is not sufficient for improving ship safety. Effective interaction between officer and ship automation system is essential for safety. In this paper, the interactive relationship between officer and the ship automation system was studied, then the research result for reducing maritime casualties will be presented.

신경회로망을 이용한 다중 전극 와우각 이식 시스템용 음성처리 알고리즘 (A Neural Speech Processing Algorithm for Multielectrode Cochlear Implant System)

  • 최진영;조진호;이건일
    • 대한의용생체공학회:의공학회지
    • /
    • 제11권1호
    • /
    • pp.83-88
    • /
    • 1990
  • A New speech processing algorithm using neural networks is proposed. We transform input data into frequency domain and process them by neural networks of 22 output neurons which have Bark scale on the ground that the Bark scale is similiar with that of the characteristics of human cochlea. An utilized neural network is multilayer perceptron, and the characteristics of cochlea have it trained by error back propagation learning algorithm. The trained neural networks suffices functions of human cochlea including the effects of automatic gain control, compression and equalization. Simulation results show that the proposed speech processing algorithm has good performance in automatic gain control, compression and equalization.

  • PDF

캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구 (A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design)

  • 이동명
    • 공학교육연구
    • /
    • 제19권6호
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.

최적화 기반 인간 팔꿈치 관절각 실시간 추출 방법 (Optimization-based Real-time Human Elbow Joint Angle Extraction Method)

  • 최영진;유현재
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1278-1285
    • /
    • 2008
  • An optimization-based real-time joint angle extraction method of human elbow is proposed by processing the biomedical signal of surface EMG (electromyogram) measured at the center point of biceps brachii. The EMG signal is known as non-stationary (time-varying) signal, but we assume that it is quasi-stationary because a physical or physiological system has limitations in the rate at which it can change its characteristics. Based on the assumption, a pre-processing method to obtain pre-angle values from raw EMG signal is firstly suggested, and then an optimization method to minimize the error between the pre-angle and real joint angle is proposed in this paper. Finally, we suggest the experimental results showing the effectiveness of the proposed algorithm.

Modeling and Posture Control of Lower Limb Prosthesis Using Neural Networks

  • Lee, Ju-Won;Lee, Gun-Ki
    • Journal of information and communication convergence engineering
    • /
    • 제2권2호
    • /
    • pp.110-115
    • /
    • 2004
  • The prosthesis of current commercialized apparatus has considerable problems, requiring improvement. Especially, LLP(Lower Limb Prosthesis)-related problems have improved, but it cannot provide normal walking because, mainly, the gait control of the LLP does not fit with patient's gait manner. To solve this problem, HCI((Human Computer Interaction) that adapts and controls LLP postures according to patient's gait manner more effectively is studied in this research. The proposed control technique has 2 steps: 1) the multilayer neural network forecasts angles of gait of LLP by using the angle of normal side of lower limbs; and 2) the adaptive neural controller manages the postures of the LLP based on the predicted joint angles. According to the experiment data, the prediction error of hip angles was 0.32[deg.], and the predicted error of knee angles was 0.12[deg.] for the estimated posture angles for the LLP. The performance data was obtained by applying the reference inputs of the LLP controller while walking. Accordingly, the control performance of the hip prosthesis improved by 80% due to the control postures of the LLP using the reference input when comparing with LQR controller.

다중협업이 가능한 AR 기반 화학공정 운전원 교육 시뮬레이터(OTS-Simulator) 개발 (Development on AR-Based Operator Training Simulator(OTS) for Chemical Process Capable of Multi-Collaboration)

  • 이준서;마병철;안수빈
    • 융합정보논문지
    • /
    • 제12권1호
    • /
    • pp.22-30
    • /
    • 2022
  • 인적오류로 발생하는 화학사고를 예방하고자 첨단 기술을 응용한 화학사고 예방 및 대응 훈련 프로그램을 개발하였다. 기존에 구축된 파일롯 플랜트(pilot plant)를 바탕으로 가상의 공정을 설계한 후, 화학사고 대응 컨텐츠를 개발하였다. 컨텐츠 구현을 위하여 파일롯 설비 일부를 개조하여 원격제어기능을 부여하였다. 또한, 가상환경에서 설비를 제어할 수 있는 DCS 프로그램을 개발하였으며, AR과 연동하여 최종적으로 가상의 화학사고를 대응할 수 있는 화학공정 운전원 교육(OTS)을 개발하였다. 이를 통해 훈련자가 직접 장치를 조작해봄으써 운전역량을 쌓을 수 있고, 가상의 화학사고를 대응함으로써 비상시 대처능력을 기를 수 있었다. 본 연구와 같은 차세대 OTS가 화학산업에 널리 보급된다면 인적오류에 의한 화학사고를 예방하는데 크게 기여할 것으로 기대된다.