• Title/Summary/Keyword: Human visual system

Search Result 873, Processing Time 0.025 seconds

A Study on Correlation between On-Line Subjective Evaluation and GSR (실시간 주관적 감성 변화와 GSR 반응과의 상관 관계)

  • 정순철;민병찬
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.120-122
    • /
    • 2003
  • In this study, an experiment was conducted in order to investigate the feasibility and effectiveness of and on-line subjective assessment (OLSA) system. The present study compared Galvanic Skin Response (GSR) with the OLSA by presenting 28 subjects in their 20s with pictures arousing either positive or negative sensibility. According to the correlation coefficients, changes in subjective sensibility caused by the positive visual stimulus were related more closely to GSR, from the positive visual stimulus, and changes in subjective sensibility caused by the negative visual stimulus were related more closely to GSR from the negative visual stimulus. In conclusion, the most remarkable characteristic of the present system is that it not only assesses the average sensibility when stimuli are presented, but also shows the changing strength of sensibility over time.

  • PDF

Telepresence Robotic Technology for Individuals with Visual Impairments Through Real-time Haptic Rendering (실시간 햅틱 렌더링 기술을 통한 시각 장애인을 위한 원격현장감(Telepresence) 로봇 기술)

  • Park, Chung Hyuk;Howard, Ayanna M.
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2013
  • This paper presents a robotic system that provides telepresence to the visually impaired by combining real-time haptic rendering with multi-modal interaction. A virtual-proxy based haptic rendering process using a RGB-D sensor is developed and integrated into a unified framework for control and feedback for the telepresence robot. We discuss the challenging problem of presenting environmental perception to a user with visual impairments and our solution for multi-modal interaction. We also explain the experimental design and protocols, and results with human subjects with and without visual impairments. Discussion on the performance of our system and our future goals are presented toward the end.

A Study of Display Sampling and Visual Momentum (디스플레이 표집과 시각타성에 관한 연구)

  • Yang, Lee-Gha
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.39-48
    • /
    • 2007
  • This study explored the Eye Movement, the horizontal and vertical flow of vision, and genetic, cultural and empirical schema, and the differentiation of the visual system of the cerebrum through the engineering psychological or the cognitive neuroscientific experiments measuring Eye Movement to maximize the efficiency of the Public Sign System in the urban environment. Accordingly, the study derived an algorithm that can bring out the most efficient visual design measurement by using EMR test and bitmap counting method. The scientific test data in this study will show the existence of the momentum of differentiation and visual sampling by the Schema and Sensory Qualia of the human.

  • PDF

Study on the Characteristic of Eye Movement for Visual Improvement of the Elderly

  • Yu, Mi;Piao, Yong-Jun;Kim, Yong-Yook;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.202-205
    • /
    • 2005
  • The purpose of this work is to identify the characteristic of eye movement for visual training of the elderly. This investigation is to examine the relationship between the head and the eye motor system for the localization of visual target direction in three-dimensional space. All experiments were performed in a soundproof chamber. Twenty-one red LEDs (Light-Emitting Diode, Brightness: 20cd/$m^2$) arrayed in three lines on a half circle-surrounding panel are used. LEDs are horizontally 30 degree apart and vertically 20 degree apart from each other. The condition of stimulation is random and anti-saccade. Physiological parameter such as EOG (Electro-Oculography) was measured by BIOPAC system. We measure the mean latency time, which is the time from the start of visual stimulation to the response of the human body. The result shows that the mean latency time is short in the case of the condition of anti-saccade, the fixed head and a quarter visual stimulation. This finding can be used in developing programs for various visual improvements for the elderly by analyzing the characteristic of eye movement.

  • PDF

Reaction Times to Predictable Visual Patterns Reflect Neural Responses in Early Visual Cortex

  • Joo, Sung Jun
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.57-64
    • /
    • 2021
  • It has long been speculated that the visual system should use a coding strategy that takes advantage of statistical redundancies in images. But how such a coding strategy should manifest in neural responses has been less clear. Low-level image structure related to the power spectrum of natural images appears to be captured by a hard-wired efficient code in the retina of the fly and precortical structures like the LGN of cats that maximizes information content through the limited capacity channel of the optic nerve. But visual images are typically filled with higher-order structure beyond that captured by the power spectrum and visual cortex is not constrained by the same capacity limits as the optic nerve. Whether and how visual cortex can flexibly code for higher order redundancies is unknown. Here we show using psychophysical techniques that the neural response in early human visual cortex may be modulated by orientation redundancies in images such that a visual feature that is contained within a predictive pattern results in slower reaction times than a feature that deviates from a pattern, suggesting lower neural responses to predictable stimuli in the visual cortex. Our results point to a neural response in early visual cortex that is sensitive to global patterns and redundancies in visual images and is in marked contrast to standard models of cortical visual processing.

Reducing Visual Discomfort for VR Browser based on Visual Perception Characteristics (사람 시각 특성을 활용한 가상현실 브라우저에서의 시각적 피로도 절감 기술)

  • Kim, Kyungtae;Kim, Haksub
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.888-890
    • /
    • 2017
  • VR browser is one of the most popular applications for VR(Virtual Reality) environment. However, because most of the web contents are not designed considering the VR environment, scrolling the web pages in the VR browser causes much visual discomfort. We found it's because the angular velocity of the eye movement during scrolling increased because the viewing distance got closer compared with legacy devices. So we have developed a technology that regulates the scrolling to reduce the visual discomfort in the VR browser, in reference of the visual perception characteristics of the human visual system.

Method for Safety-Decision to Apply International Standard Grounding Systems to Domestic Power System by Computer Simulation (국제 규격 접지시스템의 국내 적용을 위한 시뮬레이션 기반의 안전도 평가 방안)

  • Lee, Soon;Kim, Jung-Hoon;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.344-353
    • /
    • 2008
  • To apply the appropriate new grounding system to domestic power system, safety has to be guaranteed under the given circumstances. It is not possible to decide the safety of grounding systems by the experimental test because safety experiments directly relate to the human life and the installed electric machines. Therefore, the computer simulation program to decide the safety of grounding systems based on the IEC standard systems, has to be developed. This paper proposes the computer simulation based method to decide the safety of grounding system with the concepts of touch voltage, step voltage, human resistivity, and applied electric current according to the several conditions of human body located in the corresponding grounding systems. The proposed method is implemented by Matlab/Simulink and Visual C++ programming tools for its visualization.

Target Tracking System for an Intelligent Wheelchair Using Infrared Range-finder and CCD Camera (적외선 레인지파인더와 CCD 카메라를 이용한 지능 휠체어용 표적 추적 시스템)

  • Ha Yun-Su;Han Dong-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.560-570
    • /
    • 2005
  • In this paper, we discuss the tracking system for a wheelchair which can follow the path of a human target such as a nurse in hospital. The problem of human tracking is that it requires recognition of feature as well as the tracking of human positions. For this purpose the use of a high cost visual sensor such as laser finder or streo camera makes the tracking a high cost additional expense. This paper proposes the tracking system uses a low cost infrared range-finder and CCD camera, The Infrared range-finder and CCD camera can create a target candidate through each target recognition algorithm. and this information is fused in order to reduce the uncertainties of a target decision and correct the positional error of the human. The effectiveness of the proposed system is verified through experiments.

An Underwater Inspection System to Detect Hull Defects of a Ship (수중용 선체외판 길함 검사용 장치 개발)

  • Kim, Young-Jin;Cho, Young-June;Lee, Kang-Won;Shon, Woonh-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • After building a ship in a shipyard, there are so many repeated inspection of welding seam defects and painting status before delivering to the ship's owner. An inspection on the bottom part of a ship in commercial service should be done in every two years for the purpose of safety and for the prevention of ship speed deterioration. conventional welding seam inspection systems are rely on the visual inspection by human or the ultrasonic inspection for the selective part of a ship. This paper suggests a remote controlled inspection system for the examination of large ships or steel structures. The proposed system moves in contact with the ship under inspection and have a CCD camera to provide visual-guidance information to a remotely located human worker. Additionally this system utilizes a weld line tracking algorithm for an optimal position control. We verified the effectiveness of the inspection system by experimental data.

  • PDF

Wavelet-based digital watermarking using human visual system and subband-adaptive threshold (인간 시각 시스템과 부대역 적응적 문턱값을 이용한 웨이브릿 기반의 디지털 워터마킹)

  • 하인성;권성근;권기룡;이건일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.230-233
    • /
    • 2000
  • In this paper, we proposed a wavelet-based digital watermarking algorithm using human visual system and subband-adaptive threshold. After the original image is transformed using discrete wavelet transform(DWT), the perceptually significant coefficients of the each subband excluding the lowest level subbands are utilized to embed the watermark. To select perceptually significant coefficients, we use subband-adaptive threshold. For the selected coefficients, the watermark is embedded by rising HVS. We tested the performance of the proposed algorithm compared with conventional watermarking algorithm by computer simulation. The experimental results show that the proposed algorithm is superior to the conventional algorithm.

  • PDF