• Title/Summary/Keyword: Human vessels

Search Result 328, Processing Time 0.022 seconds

The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis

  • You, Weon-Kyoo;McDonald, Donald M.
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.833-839
    • /
    • 2008
  • Angiogenesis in tumors is driven by multiple growth factors that activate receptor tyrosine kinases. An important driving force of angiogenesis in solid tumors is signaling through vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). Angiogenesis inhibitors that target this signaling pathway are now in widespread use for the treatment of cancer. However, when used alone, inhibitors of VEGF/VEGFR signaling do not destroy all blood vessels in tumors and do not slow the growth of most human cancers. VEGF/VEGFR signaling inhibitors are, therefore, used in combination with chemotherapeutic agents or radiation therapy. Additional targets for inhibiting angiogenesis would be useful for more efficacious treatment of cancer. One promising target is the signaling pathway of hepatocyte growth factor (HGF) and its receptor (HGFR, also known as c-Met), which plays important roles in angiogenesis and tumor growth. Inhibitors of this signaling pathway have been shown to inhibit angiogenesis in multiple in vitro and in vivo models. The HGF/c-Met signaling pathway is now recognized as a promising target in cancer by inhibiting angiogenesis, tumor growth, invasion, and metastasis.

Congenital Heart Disease: a Pictorial Illustration of Putting Segmental Approach into Practice

  • Yeung, Tse Hang;Park, Eun-Ah;Lee, Ying Cheong;Yoo, Jin Young;Lui, Choi Yu
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • The human heart is a complex organ in which many complicated congenital defects may happen and some of them require surgical intervention. Due to the vast complexity of varied anatomical presentations, establishing an accurate and consistent nomenclature system is utmost important to facilitate effective communication among pediatric cardiologists, cardiothoracic surgeons and radiologists. The Van Praagh segmental approach to the complex congenital heart disease (CHD) was developed in the 1960s and has been used widely as the language for describing complex anatomy of CHD over the decades. It utilizes a systematic and sequential method to describe the cardiac segments and connections which in turn allows accurate, comprehensive and unambiguous description of CHD. It can also be applied to multiple imaging modalities such as echocardiogram, cardiac CT and MRI. The Van Praagh notation demonstrates a group of three letters, with each letter representative for a key embryologic region of cardiac anatomy: the atria, ventricles and great vessels. By using a 3-steps approach, we can evaluate complex CHD precisely and have no difficulties in communicating with other medial colleague. This pictorial essay revisits the logical steps of segmental approach, followed by a pictorial illustration of its application.

Perception of Ship's Movement in Docking Maneuvering using Ship-Handling Simulator

  • Arai, Yasuo;Minamiya, Taro;Okuda, Shigeyuki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.3-10
    • /
    • 2006
  • Recently it is coming to be hish reality on visual system in ship-handling simulator depending on the technical development of 3D computer graphics. Even with high reality, it is possible that visual information presented seafarers through screen or display is not equivalent to the real world. In docking maneuvering, visual targets or obstructs are sighted close to ship's operator or within few hundred meters, so it might be possible to affect visual information such as the difference between both eyes' and single eye's visual sight. Because it is not possible to perceive of very slow ship's movement by visual in case of very large vessels, so the Doppler Docking SONAR and/or Docking Speed and Distance Measurement Equipment were developed and applied for safety docking maneuvering. By the way, the simulator training includes the ship's maneuvering training in docking, but in Ship-handling Simulator and also onboard, there are some limitations of perception of ship's movement with visual information. In this paper, perception of ship's movement with visual system in Ship-handling Simulator and competition of performances of visual systems that are conventional screen type with Fixed Eye-point system and Mission Simulator. We got some conclusions not only on the effectiveness for visual system but also on the human behavior in docking maneuver.

  • PDF

A New Method for Extending Doppler Mean Frequency in Ultrasonic Imaging Systems (초음파 영상 시스템에서 새로운 도플러 평균주파수 확장 방법)

  • Kwon, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1047-1056
    • /
    • 2007
  • Basically, an ultrasonic imaging system has two fundamental imaging modes available. One is the B-mode imaging modality which provides an image of reflection coefficient, and the other is the Doppler color flow mode that maps blood flow inside the human heart and blood vessels. This paper presents a new method of detecting and compensating for aliasing that occurs when the Doppler frequency exceeds one-half of the pulse-repetition frequency (PRF). Its validity is shown by computer simulation. The new method not only extends the measurable Doppler frequency, but also helps to reduce the effect of noise. The results show that the aliasing can be compensated for correctly fur signal-to-noise ratios down to 20 dB.

  • PDF

Finite Element Analysis of Stent Expansion Considering Stent-Balloon Interaction (스텐트와 풍선의 상호작용을 고려한 스텐트 팽창의 유한요소해석)

  • Oh Byung-Ki;Cho Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.156-162
    • /
    • 2005
  • Stouts are frequently used throughout the human body, but the most critical areas are in coronary arteries. They open pathways in vessels and supply blood directly to the heart muscle. To simulate behavior of expansion for the coronary stent by balloon, the commercial finite element code LS-DYNA and ANSYS were used in the analysis. The explicit method is used to analyze the expansion of the stent and the implicit method is performed to simulate the springback that developed in a stent after the balloon pressure has been removed. Finally the experimental results for the expansion of the PS153 stents were compared with the FEM results. The springback was measured with the stents subjected to no external pressure to which stents are subjected in vivo. The simulated results were in good agreement with experimental results. Standard mechanical characteristics such as stress, plastic strains, and springback can be derived from the numerical results. These data can be used to determine maximum expansion diameter without fracture and expansion pressure considering elastic recoil.

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Effect of the Atmospheric Exposome on the Skin (대기 중 엑스포좀이 피부에 미치는 영향)

  • Song, Mee;Baek, Ji Hwoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.185-191
    • /
    • 2021
  • Environmental pollution is defined as contamination of the earth's environment with materials which interfere with human health, quality of life, or the natural functioning of the ecosystem. Whenever a prolonged and repetitive exposure to environmental stressors exceeds the skin's normal defensive potential, there is a disturbance in the skin barrier function leading to the development of various skin diseases. Major air pollutants which affect the skin are polycyclic aromatic hydrocarbons, volatile organic compounds, nitrogen oxides, particulate matter, cigarette smoke, heavy metals and arsenic. Dermal uptake depends on the deposition of air pollutants on the skin surface, the composition of epidermal lipids, and the diffusion through the epidermis to the blood vessels.

In vivo Screening of Herbal Extracts on High Glucose-induced Changes in Hyaloid-Retinal Vessels of Zebrafish (고혈당으로 유도된 제브라피쉬 당뇨망막병증 모델에서 약용식물의 효능 평가)

  • Lee, Yu-Ri;Jung, Seung-Hyun;Lee, Ik Soo;Kim, Joo Hwan;Kim, Young Sook;Kim, Jin Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • The zebrafish (Danio rerio) is an established model organism for several pathophysiological conditions which are related to human diseases. In this study, we tested the preventive effect of eight herbal extracts, which show the inhibitory effect of advanced glycation end products (AGEs) or aldose reductase (AR) in our previous study, on high glucose (HG)-induced retinal vessel dilation in larval zebrafish and analyzed the change of hyaloid vasculature. HG-induced zebrafish hyaloid vasculatures were significantly increased in the thickness compared to untreated zebrafish (P<0.001, n=6~10). Eight herbal extracts were found to have significant retinal vessel dilation on the inhibitory activity. Particularly, Brandisia hancei (twigs and fruits), Castanopsis orthacantha (leaves and twigs), Litsea japonica (leaves and twigs), Spenceria ramalana (whole plant), and Synedrella nodiflora (leaves and stems) showed potent inhibitory activity against retinal vessel dilation in HG-induced larval zebrafish.

Anatomical Study on Hand Gworeum Skin in Human

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.72-77
    • /
    • 2020
  • Objectives: This study was carried out to concrete the concept of Hand Gworeum Skin referred in Suwen of Huangdi Neijing. Methods: The Hand Gworeum Meridian was labeled with latex in the body surface of the cadaver, subsequently dissecting a superficial fascia and muscular layer in order to observe internal structures. Results: Skin histologically encompasses a common integument and a immediately below superficial fascia, this study established the skin boundary with adjacent structures such as relative muscle, tendon as its compass. The realm of the Hand Gworeum Skin is as follows: The skin close to the nipple on the 4th intercostal space, the interceps of biceps brachii muscle, the cubital surface at ulnad of bicipital aponeurosis, the anterior surface of the forearm, between flexor carpi radialis and palmaris longus(from wrist crease to 5chon above), the palm between the 3rd and 4th metacarpals on the cross part with the palm crease, the radiod from the middle finger nail(or the end of middle finger). The realm of the Hand Gworeum Skin is situated on between Hand Taeeum Skin and Hand Soeum Skin in front of arm. Conclusion: The realm of Hand Gworeum Skin from the anatomical viewpoint seems to be the skin area outside the superficial fascia or the muscle involved in the pathway of the Hand Gworeum Meridian vessel, Collateral Meridian vessel, and Meridian muscle, being considered adjacent vessels or nerves at the same time.

Optical Imaging Technology for Real-time Tumor Monitoring

  • Shin, Yoo-kyoung;Eom, Joo Beom
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.123-131
    • /
    • 2021
  • Optical imaging modalities with properties of real-time, non-invasive, in vivo, and high resolution for image-guided surgery have been widely studied. In this review, we introduce two optical imaging systems, that could be the core of image-guided surgery and introduce the system configuration, implementation, and operation methods. First, we introduce the optical coherence tomography (OCT) system implemented by our research group. This system is implemented based on a swept-source, and the system has an axial resolution of 11 ㎛ and a lateral resolution of 22 ㎛. Second, we introduce a fluorescence imaging system. The fluorescence imaging system was implemented based on the absorption and fluorescence wavelength of indocyanine green (ICG), with a light-emitting diode (LED) light source. To confirm the performance of the two imaging systems, human malignant melanoma cells were injected into BALB/c nude mice to create a xenograft model and using this, OCT images of cancer and pathological slide images were compared. In addition, in a mouse model, an intravenous injection of indocyanine green was used with a fluorescence imaging system to detect real-time images moving along blood vessels and to detect sentinel lymph nodes, which could be very important for cancer staging. Finally, polarization-sensitive OCT to find the boundaries of cancer in real-time and real-time image-guided surgery using a developed contrast agent and fluorescence imaging system were introduced.