• Title/Summary/Keyword: Human umbilical vein endothelial cells

Search Result 242, Processing Time 0.026 seconds

Streamlined Shape of Endothelial Cells

  • Chung, Chan-Il;Chang, Jun-Keun;Min, Byoung-Goo;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.861-866
    • /
    • 2000
  • Flow induced shape change is important for spatial interpretation of vascular response and for understanding of mechanotransduction in a single cell. We investigated the possible shapes of endothelial cell (EC) in a mathematical model and compared these with experimental results. The linearized analytic solution from the sinusoidal wavy wall and Stokes flow was applied with the constraint of EC volume. The three dimensional structure of the human umbilical vein endothelial cell was visualized in static culture or after various durations of shear stress (20 $dyne/cm^2$ for 5, 10, 20, 40, 60, 120min). The shape ratio (width: length: height) of model agreed with that of the experimental result, which represented the drag force minimizing shape of stream-lining. EC would be streamlined in order to accommodate to the shear flow environmented by active reconstruction of cytoskeletons and membranes through a drag force the sensing mechanism.

  • PDF

IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells

  • Feng, Bo;Zhang, Qian;Wang, Jianfang;Dong, Hong;Mu, Xiang;Hu, Ge;Zhang, Tao
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.271-281
    • /
    • 2018
  • IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on $IFN-{\alpha}/{\beta}$ production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of $IFN-{\alpha}/{\beta}$ also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.

Protective Effects of the BuOH Fraction from Laminaria japonica Extract on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Park, Min-Jung;Song, Young-Sun;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.94-99
    • /
    • 2006
  • This study investigated the protective effect of the butanol (BuOH) fraction from Laminaria japonica (BFLJ) extract on high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). Freeze-dried L japonica was extracted with distilled water, and the extracted solution was mixed with ethanol then centrifuged. The supernatant was subjected to sequential fractionation with various solvents. The BuOH fraction was used in this study because it possessed the strongest antioxidant activity among the various solvent fractions. To determine the protective effect of the BFLJ, oxidative stress was induced by exposing of HUVECs to the high glucose (30 mM) or normal glucose (5.5 mM) for 48 hr. Cell viability, lipid peroxidation, glutathione (GSH) concentration, and antioxidant enzyme activities such as catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and glutathion reductase (GSH-re) were measured. Exposure of HUVECs to high glucose for 48 hr resulted in a significant (p<0.05) decrease in cell viability, SOD, GSH-px and GSH-re and a significant (p<0.05) increase in thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5.5 mM glucose or untreated with glucose. BFLJ treatment decreased TBARS formation and increased cell viability, GSH concentration, and activities of antioxidant enzymes including catalase, SOD, GSH-px, and GSH-re in high glucose pretreated HUVECs. These results suggest that BFLJ may be able to protect HUVECs from high glucose-induced oxidative stress, partially through the antioxidative defence systems.

Basic Fibroblast Growth Factor Increases Intracellular Magnesium Concentration through the Specific Signaling Pathways

  • Hong, Bing-Zhe;Park, Sun-Ah;Kim, Han-Na;Ma, Tian-Ze;Kim, Han-Gyu;Kang, Hyung-Sub;Kim, Hwan-Gyu;Kwak, Yong-Geun
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. $Mg^{2+}$ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular $Mg^{2+}$ concentration ($[Mg^{2+}]_i$) in human umbilical vein endothelial cells (HUVECs). bFGF increased ($[Mg^{2+}]_i$) in a dose-dependent manner, independent of extracellular $Mg^{2+}$. This bFGF-induced $[Mg^{2+}]_i$ increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase $C{\gamma}$ ($PLC{\gamma}$) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced $[Mg^{2+}]_i$ increase. These results suggest that bFGF increases the $[Mg^{2+}]_i$ from the intracellular $Mg^{2+}$ stores through the tyrosine kinase/PI3K/$PLC{\gamma}$-dependent signaling pathways.

Loss of phospholipase D2 impairs VEGF-induced angiogenesis

  • Lee, Chang Sup;Ghim, Jaewang;Song, Parkyong;Suh, Pann-Ghill;Ryu, Sung Ho
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.191-196
    • /
    • 2016
  • Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis and critical for normal embryonic development and repair of pathophysiological conditions in adults. Although phospholipase D (PLD) activity has been implicated in angiogenic processes, its role in VEGF signaling during angiogenesis in mammals is unclear. Here, we found that silencing of PLD2 by siRNA blocked VEGF-mediated signaling in immortalized human umbilical vein endothelial cells (iHUVECs). Also, VEGF-induced endothelial cell survival, proliferation, migration, and tube formation were inhibited by PLD2 silencing. Furthermore, while Pld2-knockout mice exhibited normal development, loss of PLD2 inhibited VEGF-mediated ex vivo angiogenesis. These findings suggest that PLD2 functions as a key mediator in the VEGF-mediated angiogenic functions of endothelial cells.

Analysis of Fatty Acid Composition and Effects of Pumpkin Seed Oil on Human Umbilical Vein Endothelial Cells (호박씨유의 지방산 성분 분석 및 Human Umbilical Vein Endothelial Cell에 미치는 영향 연구)

  • Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Kim, Tae Woo;Lee, Jeong Il;Choe, Myeon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.3
    • /
    • pp.351-358
    • /
    • 2014
  • Pumpkin seed oil (PSO) was investigated for its parasite elimination activity and efficacy in treating disorders of the prostate gland and urinary bladder. We confirmed the composition of PSO and identified its ability to improve vessels. Gas chromatography coupled with mass spectrometric (GC-MS) system was used for PSO composition analysis. Cytotoxicity and cell proliferation were confirmed by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide(NO) production was measured with Griess reagent, and intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mRNA expression levels were measured by reverse transcription polymerase chain reaction (RT-PCR). As a result, PSO revealed the presence of several components such as linoleic acid, oleic acid, palmitic acid and stearic acid. Cytotoxic effects of PSO were not observed, and PSO increased nitric oxide production in human umbilical vein endothelial cells (HUVEC). Additionally, TNF-${\alpha}$-induced cell proliferation and ICAM-1 expression in HUVEC were inhibited by PSO treatment, whereas VCAM-1 expression was not significantly reduced. Taken together, these results show that PSO is worthy of study as a candidate food material for improvement of vascular disease.

Repetition of Apoptosis Induced by Amiloride Derivatives in Human Umbilical Vein Endothelial Cells (제대정맥 내피세포에서 Amiloride 유도체에 의한 Apoptosis 반복)

  • Park, Kyu Chang;Park, Kyu Sang;Moon, Soo Jee
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.1
    • /
    • pp.56-66
    • /
    • 2003
  • Purpose : Human umbilical vein endothelial cells(HUVECs) play an important role in regulating blood flow by releasing vasoactive substances. It has been reported that endothelial impairment and dysfunction might be a primary cause of placental vascular disease, which is manifested clinically as preeclampsia in mother and intrauterine growth restriction in fetus. Furthermore, the frequency of apoptotic changes is increased in umbilical and placental tissues from growth-restricted pregnancies. However, the various mechanisms of umbilical endothelial cell apoptosis have not been broadly proposed. We investigate the effects of amiloride derivatives on apoptotic death of HUVECs and identify their ionic mechanism. Methods : HUVECs were purchased from Clonetics, and cultured on endothelial cell growth medium. MTT assay and flow cytometry were used for assessing cytotoxic effect and confirming the apoptosis. Changes in intracellular ion concentrations were measured with specific fluorescent dyes and fluorescence imaging analysis system. Results : Amiloride derivatives elicited cytotoxic effects on HUVECs with dose-dependent manners and the rank order of potency is HMA($IC_{50}\;11.2{\mu}M$), MIA>EIPA>>amiloride. HMA-induced cytotoxicity is dependent on extra- and intracellular pH, that is, increase extra- and intracellular pH augmented the cytotoxic effects of HMA. HMA dose-dependently reduced intracellular major ions, such as $K^+$ and $Cl^-$. Interestingly, the depletion of intracellular ions induced by HMA was also significantly enhanced at alkaline extracellular pH. Conclusion : Amiloride derivatives induce apoptosis of HUVECs with dose and pH dependent manners. They reduce intracellular $K^+$ and $Cl^-$ concentration, which is also extracellular pH dependent.

Estrogen Mediates Ischemic Damage and the Migration of Human Umbilical Cord Blood Cells

  • Kim, Jee-Yun;Yu, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young;Lee, Chae-Kwan;Kang, Sung-Goo
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.71-71
    • /
    • 2003
  • Human umbilical cord blood cells(HUCBC) are rich in mesenchymal progenitor cells, endothelial cell precursors and hematopoietic cells. HUCBC have been used as a source of transplantable stem and progenitor cells. However, little is known about survival and development of HUCBC transplantation in the CNS. Estrogen has a neuroprotective potential against oxidative stress-induced cell death so has an effect on reducing infarct size of ischemic brain. We investigated the potential use of HUCBC as donor cells and tested whether estrogen mediates intravenously infused HUCBC enter and survive in ischemic brain. PKH26 labeled mononuclear fraction of HUCBC were injected into the tail vein of ischemic OVX rat brain with or without $17\beta$-estradiol valerate(EV). Under fluorescence microscopy, labeled cells were observed in the brain section. Significantly more cells were found in the ischemic brain than in the non-ischemic brain. HUCBC transplanted into ischemic brain could migrate and survive. Some of cells have shown neuronal like cells in hippocampus, striatum and cortex tissues. These result suggest that estrogen reduces ischemic damage and increases the migration of human umbilical cord blood cells. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) though the Biohealth Products Research Center(BPRC), Inje University, Korea.

  • PDF

Extract of Balloon-flower Inhibited In Vitro Angiogenesis in Human Umbilical Vein Endothelial Cells (도라지 추출물에 의한 인간 제대 정맥 내피 세포의 in vitro 혈관신생 억제)

  • Yi, Eui-Yeun;Kim, Yung-Jin
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1059-1063
    • /
    • 2017
  • Angiogenesis is an essential step in tumoral growth and metastasis and is regulated by a balance between stimulators and inhibitors. Recently, antiangiogenic target therapy has shown promise as a new type of chemotherapy. Natural products have attracted widespread attention worldwide as a useful source of novel therapeutic compounds. The balloon-flower has long been used as a traditional medicinal material and food in Asia. In this study, we investigated whether extract of balloon-flower would inhibit in vitro angiogenesis and vascular-like network formation in human umbilical vein endothelial cells (HUVECs). The extract of Balloon-flower did not affect the viability of HUVECs. However, treatment with the Balloon-flower extract suppressed tube formation of HUVECs. In addition, after treatment with the Balloon-flower extract, cell migration decreased about 80%, and cell invasion was almost completely inhibited. Taken together, these results suggest that extract of Balloon-flower may have potential as an angiogenic inhibitor and that it could be developed as an anticancer agent.

Delphinidin Chloride Effects on the Expression of TNF-$\alpha$ Induced Cell Adhesion Molecules (TNF-$\alpha$에 의해 유도된 세포부착분자의 발현에 대한 Delphinidin chloride의 억제 효과)

  • Koh, Eun-Gyeong;Chae, Soo-Chul;Seo, Eun-Sun;Na, Myung-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.88-94
    • /
    • 2009
  • The process of atherosclerosis begins through secretion of inflammatory cytokine or adhesion of leukocyte from damage in blood vessels and transmigration. This study was conducted to investigate the effects of delphinidin chloride (DC) in the initial process of atherosclerosis on the expression of ICAM-1 (Intracellular Adhesion Molecule-1) and VCAM-1 (Vascular Adhesion Molecule-1) related to adhesion of leukocyte at the HUVEC (human umbilical vein endothelial cell line. As a result, cell growth inhibition rate at 50 ${\mu}M$ was respectively 4, 3 and 5% without cell toxicity. As a result of morphological observation monocyte-endothelial cell adhesion assay and optical microscope carried out to measure attachment of mononuclear cells to endothelial cells induced by Tumor necrosis factor-alpha (TNF-$\alpha$) at concentrations without cell toxicity, DC concentration-dependently suppressed attachment. When effects on the expression of VCAM-1 and ICAM-1, cell adhesion molecules induced from endothelial cells by TNF-$\alpha$, were comparatively analyzed using western blot analysis and RT-PCR methods, protein of VCAM-1 and ICAM-1 and expression at the level of mRNA were concentration-dependently reduced. Taken together, the results of this studies provide evidence that DC possess an anti-metastatic activity.