• 제목/요약/키워드: Human telomerase reverse transcriptase

검색결과 40건 처리시간 0.04초

Cancer-Specific Induction of Adenoviral E1A Expression by Group I Intron-Based Trans-Splicing Ribozyme

  • Won, You-Sub;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.431-435
    • /
    • 2012
  • In this study, we describe a novel approach to achieve replicative selectivity of conditionally replicative adenovirus that is based upon trans-splicing ribozyme-mediated replacement of cancer-specific RNAs. We developed a specific ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to induce adenoviral E1A gene expression selectively in cancer cells that express the RNA. Western blot analysis showed that the ribozyme highly selectively triggered E1A expression in hTERT-expressing cancer cells. RT-PCR and sequencing analysis indicated that the ribozyme-mediated E1A induction was caused via a high fidelity trans-splicing reaction with the targeted residue in the hTERT-expressing cells. Moreover, reporter activity under the control of an E1A-dependent E3 promoter was highly transactivated in hTERT-expressing cancer cells. Therefore, adenovirus containing the hTERT RNA-targeting trans-splicing ribozyme would be a promising anticancer agent through selective replication in cancer cells and thus specific destruction of the infected cells.

Isolation and characterization of bovine cementoblast progenitor cells

  • Saito, Masahiro;Tsunoda, Akira;Teranaka, Toshio
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2003년도 제120회 추계학술대회 제 5차 한ㆍ일 치과보존학회 공동학술대회
    • /
    • pp.546.2-546
    • /
    • 2003
  • Dental follicle is the mesenchymal tissue which surrounds developing tooth germ. During tooth root development, periodontal components such as cementum, periodontal ligament and alveolar bone are considered to be created by progenitors present in the dental follicle. However, little is known about these progenitors. Previously we observed that cultured bovine dental follicle cells (BDFC) contained putative cementoblast progenitors. To further analyze the biology of these cells, we have attempted to immortalize BDFC by expression of the polycomb group protein Bmi-1 and human telomerase reverse transcriptase (hTERT). The BDFC expressing Bmi-1 and hTERT showed extended life span by 90 population doublings more than normal BDFC, and still contained cells with potential to differentiate into cementoblasts upon implantation into immunodeficiency mice. Among them, we established a clonal cell line designated as BCPb8, which formed cemetum-like mineralized tissue reactive to anti-cementum specific monoclonal antibody, 3G9, and expressed mRNA for bone sialoprotein, osteocalcin, osteopontin and type I collagen upon implantation. Thus with the combination of hTERT and Bmi-1, we succeeded in immortalization of cementoblast progenitor in BDFC without affecting differentiation potential. The BCPb8 progenitor cell line could be a useful tool not only to study cementogenesis but also to develop regeneration therapy for periodontitis.

  • PDF

동충하초 추출물에 의한 U937 인체 백혈병 세포의 성장억제 효과 (Anti-proliferative Effects by Aqueous Extract of Cordyceps Militaris in Human Leukemic U937 Cells)

  • 박동일;서상호;최영현;홍상훈
    • 동의생리병리학회지
    • /
    • 제19권2호
    • /
    • pp.452-458
    • /
    • 2005
  • Cordyceps militaris is a medicinal fungus, which has been used for patient suffering from cancer in Oriental medicine. It was reported previously that C. militaris extracts are capable of inhibiting tumor growth, however, the anti-poliferative effects of human cancer cells have not been poorly understood. In this study, to elucidate the growth inhibitory mechanisms of human cancer cells by treatment of aqueous extract of C. militaris (AECM) we investigated the anti-proliferative effects of AECM in human leukemia U937 cell line. AECM treatment inhibited the growth of U937 cells and induced the apoptotic cell death in a concentration-dependent manner, which was associated with morphological changes. We observed the up-regulation of cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1) by p53-independent manner and activation of caspase-3 in AECM-treated U937 cells, however, the activity of caspase-9 was remained unchanged. Additionally, AECM treatment caused a dose-dependent inhibition of the expression of telomere regulatory gene products such as human telomere reverse transcriptase (hTERT) and telomerase-associated protein-1 (TEP-1). Taken together, these findings suggest that AECM-induced inhibition of human leukemic cell proliferation is associated with the induction of apoptotic cell death via modulation of several major growth regulatory gene products, and C. militaris may have therapeutic potential in human lung cancer.

약침용 봉독성분 melittin의 영향에 의한 인체 폐암세포의 apoptosis 유도 (Melittin-induced Aapoptosis is Associated with Inhibition of COX-2 and hTERT Expression in Human Lung Carcinoma A549 Cells)

  • 안창범;임춘우;윤현민;박수진;최영현
    • Journal of Acupuncture Research
    • /
    • 제20권5호
    • /
    • pp.93-106
    • /
    • 2003
  • Objective : To investigate the possible molecular mechanism(s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods: MTT, morphological changes, DAPI staining, Western blot, RT-PCR and in vitro prostaglandin E2 (PGE2) accumulation assays were performed. Results: The anti-proliferative effect by melittin treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Melittin induced apoptotic cell death in a concentration-dependent manner, which was associated with inhibition or degradation of apoptotic target proteins such as ${\beta}$-catenin, poly(ADP-ribose) polymerase(PARP) and phospholipase $C-{\gamma}1(PLC-{\gamma}1)$. Melittin treatment inhibited the expression of cyclooxygenase-2(COX-2) and accumulation of PGE2 in aconcentration-dependent fashion. In addition, Melittin treatment induced the down-regulation of telomerase reverse transcriptase(hTERT) and proto-oncogene c-myc expression of A549 cells. Conclusions: Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF

인체폐암세포의 성장에 미치는 위경장의 영향에 관한 연구 (Induction of Cdk Inhibitor p21 and Inhibition of hTERT Expression by the Aqueous Extract of Wikyung-tang in Human Lung Carcinoma Cells)

  • 최해윤;박철;최영현;박동일
    • 동의생리병리학회지
    • /
    • 제18권2호
    • /
    • pp.553-560
    • /
    • 2004
  • In the present study, we investigated the anti-proliferative effects of aqueous extract of Wikyung-tang(WKT) on the growth of human lung carcinoma cell line A549. WKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effects by WKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. WKT treatment induced an inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase (PARP) and phospholipase C-γ1 (PLC-γ1). WKT treatment did not affect the levels of other Bcl-2 family gene products, such as Bcl-2, Bax and Bad. Western blot analysis and RT-PCT data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were induced by WKT treatment in A549 cells. Additionally, WKT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of A549 cells, however, the levels of other telomere-regulatory gene products were not affected. Taken together, these findings suggest that WKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and WKT may have therapeutic potential in human lung cancer.

Tabebuia avellanedae에서 유래된 ${\beta}>-lapachone$의 인체폐암세포 apoptosis 유발에 관한 연구 (Growth Inhibition of Human Lung Carcinoma Cells by ${\beta}>-lapachone$ through Induction of Apoptosis)

  • 최병태;이용태;최영현
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.722-728
    • /
    • 2005
  • The DNA topoismerase I inhibitor ${\beta}-lapachone$, the product of a lapacho tree (Tabebuia avellanedae) from South America, activates a novel apoptotic response in a number of cell lines. In the present report, we investigated the effects of ${\beta}-lapachone$ on the growth of human lung in human non-small-cell-lung-cancer A549 cells. Upon treatment with ${\beta}-lapachone$, a concentration-dependent inhibition of cell viability and cell proliferation was observed as measured by hemocytometer counts and MTT assay. The ${\beta}-lapachone-treated$ cells developed many of the hallmark features of apoptosis, including membrane shrinking, condensation of chromatin and DNA fragmentation. These apoptotic effects of ${\beta}-lapachone$ in A549 cells were associated with a marked induction of pro-apoptotic Bax expression, however the levels of anti-apoptotic Bcl-2 expression were decreased in a dose-dependent manner. Accordingly, elevated amount of cyclin-dependent kinase inhibitor p21 expression accompanied by up-regulation of tumor suppressor p53 was observed. By RT-PCR analyses, decrease in gene expression level of telomerase reverse transcriptase and telomeric repeat binding factor were also observed. Thus, these findings suggest that ${\beta}-lapachone$ may be a potential anti-cancer therapeutics for the control of human lung cancer cell model.

ROCK 억제제를 통한 사람 치유두 조직 유래 단일 사람 유도만능줄기세포의 생존성 향상 (Improvement of Cell Viability Using a Rho-associated Protein Kinase (ROCK) Inhibitor in Human Dental Papilla derived Single-induced Pluripotent Stem Cells)

  • 심유진;강영훈;김현지;김미정;이현정;손영범;이성호;전병균
    • 생명과학회지
    • /
    • 제29권8호
    • /
    • pp.895-903
    • /
    • 2019
  • 이 연구는 단일 세포로 분리된 유도만능줄기세포(induced pluripotent stem cells, iPSCs)에 anoikis 세포사멸을 억제할 수 있는 Rho-associated protein kinase (ROCK)의 억제제를 처리하여 iPSCs의 세포 생존성을 향상하고자 하였다. Episomal plasmid 방법으로 확립된 iPSCs를 단일세포로 분리한 후, ROCK 억제제 Y-27632 dihydrochloride (Y-27632)를 0 uM, 0.5 uM, 1 uM, 2.5 uM, 5 uM, 7.5 uM 및 10 uM 농도별로 5주일 동안 각각 처리하였을 때, 5 uM 이상의 농도에서 세포의 생존율이 유의적으로 향상되었고, 10 uM의 Y-27632을 0일, 1일, 2일, 3일, 4일 및 5일 동안 처리하였을 때, Y-27632의 노출 기간이 길어질수록 세포의 생존율이 유의적으로 향상되는 것을 관찰하였다. 그러나, Y-27632의 노출 후, iPSCs의 형태학적 분화가 관찰되어 10 uM의 Y-27632에서 5일 동안 iPSCs에 처리 한 후, 줄기세포학적인 특성을 비교 조사하였다. 우선, octamer-binding transcription factor 4 (OCT-4), homeobox protein NANOG (NONOG) 및 SRY-box 2 (SOX-2) 줄기세포 특이 유전자의 발현은 Y-27632를 처리한 실험군은 Y-27632를 처리하지 않은 대조군에서 서로 유의적인 차이를 나타내지 않았다. 또한, Y-27632를 처리한 실험군은 Y-27632를 처리하지 않은 대조군과 비교하여 telomerase 활성과 이것의 활성과 관련된 telomerase reverse transcriptase (TERT) 및 telomerase RNA component (TERC)의 유전자 발현에는 유의적인 차이가 없었다. 이상의 결과로 보아, iPSCs에 Y-27632를 처리하였을 때, iPSCs의 줄기세포의 특정을 유지하면서 anoikis에 의한 세포사멸을 감소시켜 세포 생존율이 증가한다는 것을 알 수 있었다.

DNA topoisomerase 억제제인 β-lapachone에 의한 인체 간암 및 방광암세포 증식억제에 관한 연구 (Growth Inhibition of Human Hepatoma and Bladder Carcinoma Cells by DNA Topoisomerae Inhibitor β-lapachone)

  • 최다연;이재일;정협섭;서한결;우현주;최영현
    • 생명과학회지
    • /
    • 제15권3호
    • /
    • pp.323-331
    • /
    • 2005
  • 남미지역에서 자생하는 Tabebuia avellanedae라는 나무의 수피에서 동정된 quinone계 물질이며, DNA topoisomeras억제제로 알려진 $\beta-lapachone$의 항암작용에 관한 부가적인 자료를 얻기 위하여 인체 간암(HepG2) 및 방광암(T24)세포를 대상으로 조사한 결과 다음과 같은 결과를 얻게 되었다. MTT assay 및 flow cytometry 분석 등의 결과에서, $\beta-lapachone$의 처리에 따라 조사된 두 가지 암세포에서 $\beta-lapachone$처리 농도의존적으로 암세포의 심한 형태적 변형이 동반되면서 암세포의 증식이 억제되었으며, 생존율이 저하되었고 이는 apoptosis유발과 상관성이 있음을 알 수 있었다. $\beta-lapachone$처리에 의한 두 암세포의 증식억제는 종양억제 유전자 p53 및 Cdk inhibitor p21의 발현과는 큰 연관성이 없음을 RT-PCR 및 Western blot analysis를 통하여 확인하였다. 그러나 전사조절인자 Sp-1 및 세포증식 주요조절인자인 PCNA의 단백질 발현은 $\beta-lapachone$처리에 따라 매우 감소되었으며, telomere조절에 중요한 인자들의 선택적 발현 저하 현상도 관찰되었다. 이상의 결과들은 인체 암세포에서 $\beta-lapachone$의 항암작용을 이해하는 중요한 자료가 될 것이며, $\beta-lapachone$과 유사한 화학적 구조 및 성질을 가지는 항암제 후보물질들의 항암기전 비교 및 항암제 개발을 위한 기초 자료로서 응용될 것이다.

Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease

  • Kim, Hyunho;Sung, Jinmo;Kim, Hyunsuk;Ryu, Hyunjin;Park, Hayne Cho;Oh, Yun Kyu;Lee, Hyun-Seob;Oh, Kook-Hwan;Ahn, Curie
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.463-468
    • /
    • 2019
  • Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.

Sex Differences in Autism-Like Behavioral Phenotypes and Postsynaptic Receptors Expression in the Prefrontal Cortex of TERT Transgenic Mice

  • Kim, Ki Chan;Cho, Kyu Suk;Yang, Sung Min;Gonzales, Edson Luck;Valencia, Schley;Eun, Pyeong Hwa;Choi, Chang Soon;Mabunga, Darine Froy;Kim, Ji-Woon;Noh, Judy Kyoungju;Kim, Hee Jin;Jeon, Se Jin;Han, Seol-Heui;Bahn, Geon Ho;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.374-382
    • /
    • 2017
  • Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.