DOI QR코드

DOI QR Code

Cancer-Specific Induction of Adenoviral E1A Expression by Group I Intron-Based Trans-Splicing Ribozyme

  • Won, You-Sub (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Seong-Wook (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • Received : 2011.10.18
  • Accepted : 2011.11.16
  • Published : 2012.03.28

Abstract

In this study, we describe a novel approach to achieve replicative selectivity of conditionally replicative adenovirus that is based upon trans-splicing ribozyme-mediated replacement of cancer-specific RNAs. We developed a specific ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to induce adenoviral E1A gene expression selectively in cancer cells that express the RNA. Western blot analysis showed that the ribozyme highly selectively triggered E1A expression in hTERT-expressing cancer cells. RT-PCR and sequencing analysis indicated that the ribozyme-mediated E1A induction was caused via a high fidelity trans-splicing reaction with the targeted residue in the hTERT-expressing cells. Moreover, reporter activity under the control of an E1A-dependent E3 promoter was highly transactivated in hTERT-expressing cancer cells. Therefore, adenovirus containing the hTERT RNA-targeting trans-splicing ribozyme would be a promising anticancer agent through selective replication in cancer cells and thus specific destruction of the infected cells.

Keywords

References

  1. Alemany, R., C. Balague, and D. T. Curiel. 2000. Replicative adenoviruses for cancer therapy. Nat. Biotechnol. 18: 723-727. https://doi.org/10.1038/77283
  2. Ban, G., J. S. Jeong, A. Kim, S. J. Kim, S. Y. Han, I. H. Kim, and S. W. Lee. 2011. Selective and efficient retardation of cancers expressing cytoskeleton-associated protein 2 by targeted RNA replacement. Int. J. Cancer 129: 1018-1029. https://doi.org/10.1002/ijc.25988
  3. Berk, A. J. 2005. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24: 7673-7685. https://doi.org/10.1038/sj.onc.1209040
  4. Bischoff, J. R., D. H. Kirn, A. Williams, C. Heise, S. Horn, M. Muna, et al. 1996. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373-376. https://doi.org/10.1126/science.274.5286.373
  5. Brown, B. D. and L. Naldini. 2009. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat. Rev. Genet. 10: 578-585.
  6. Cleator, S. J. and P. Price. 2000. Management problems in oncology. Adv. Exp. Med. Biol. 465: 3-10.
  7. Hong, S. H., J. S. Jeong, Y. J. Lee, H. I. Jung, K. S. Cho, C. M. Kim, et al. 2008. In vivo reprogramming of hTERT by transsplicing ribozyme to target tumor cell. Mol. Ther. 16: 74-80. https://doi.org/10.1038/sj.mt.6300282
  8. Hurst, H. C. and N. C. Jones. 1987. Identification of factors that interact with the E1A-inducible adenovirus E3 promoter. Genes Dev. 1: 1132-1146. https://doi.org/10.1101/gad.1.10.1132
  9. Jeong, J. S., S. W. Lee, S. H. Hong, Y. J. Lee, H. I. Jung, K. S. Cho, et al. 2008. Antitumor effects of systemically delivered adenovirus harboring trans-splicing ribozyme in intrahepatic colon cancer mouse model. Clin. Cancer Res. 14: 281-290. https://doi.org/10.1158/1078-0432.CCR-07-1524
  10. Kirn, D., R. L. Martuza, and J. Zwiebel. 2001. Replicationselective virotherapy for cancer: Biological principles, risk management and future directions. Nat. Med. 7: 781-787. https://doi.org/10.1038/89901
  11. Ko, D., L. Hawkins, and D. C. Yu. 2005. Development of transcriptionally regulated oncolytic adenoviruses. Oncogene 24: 7763-7774. https://doi.org/10.1038/sj.onc.1209048
  12. Kwon, B. S., H. S. Jung, M. S. Song, K. S. Cho, S. C. Kim, K. Kimm, et al. 2005. Specific regression of human cancer cells by ribozyme-mediated targeted replacement of tumor-specific transcript. Mol. Ther. 12: 824-834. https://doi.org/10.1016/j.ymthe.2005.06.096
  13. Lan, N., R. P. Howrey, S. W. Lee, C. A. Smith, and B. A. Sullenger. 1998. Ribozyme-mediated repair of sickle ${\beta}$-globin mRNAs in erythrocyte precursors. Science 280: 1593-1596. https://doi.org/10.1126/science.280.5369.1593
  14. Phylactou, L. A., C. Darrah, and M. A. J. Wood. 1998. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat. Genet. 18: 378-381. https://doi.org/10.1038/ng0498-378
  15. Ryu, K. J., J. H. Kim, and S. W. Lee. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted transsplicing. Mol. Ther. 7: 386-395. https://doi.org/10.1016/S1525-0016(02)00063-1
  16. Shin, K. S., B. A. Sullenger, and S. W. Lee. 2004. Ribozymemediated induction of apoptosis in human cancer cells by targeted repair of mutant p53 RNA. Mol. Ther. 10: 365-372 https://doi.org/10.1016/j.ymthe.2004.05.007
  17. Song, M. S., J. S. Jeong, G. Ban, J. H. Lee, Y. S. Won, K. S. Cho, et al. 2009. Validation of tissue-specific promoter-driven tumor-targeting trans-splicing ribozyme system as a multifunctional cancer gene therapy device in vivo. Cancer Gene Ther. 16: 113-125. https://doi.org/10.1038/cgt.2008.64
  18. Wu, L., M. Johnson, and M. Sato. 2003. Transcriptionally targeted gene therapy to detect and treat cancer. Trends Mol. Med. 9: 421-429. https://doi.org/10.1016/j.molmed.2003.08.005

Cited by

  1. Therapeutic applications of group I intron‐based trans ‐splicing ribozymes vol.9, pp.3, 2012, https://doi.org/10.1002/wrna.1466