• 제목/요약/키워드: Human gingival fibroblasts

검색결과 144건 처리시간 0.028초

니코틴과 PDGF-AB가 배양인체 치은섬유모세포 및 치주인대세포의 활성에 미치는 영향 (Effects Of Nicotine And PDGF On The Cell Activity Of Human Gingival Fibroblasts And Periodontal Ligament Cells.)

  • 김덕규;공영환;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제26권1호
    • /
    • pp.176-187
    • /
    • 1996
  • The ability of fibroblasts attached to teeth is paramount important in reestablishing the lost connective tissue attachment after periodontal therapy. The migration and proliferation of periodontal ligament cells are desired goal of periodontal regeneration therapy. PDGF is well known to regulate the cell activity of mesenchymal origin cell. Tobacco contains a complex mixture of substance including nicotine, various nitrosamines, trace elements, and variety of poorly characterized substances. Human gingival fibroblasts and periodontal ligament cells were cultured from extracted tooth for non-periodontal reason. Cultured human gingival fibroblasts and periodontal ligament cells in vitro were treated with PDGF, nicotine in time dependent manner. Cellular activities were determined by MTT assay. The purpose of this study was to determine the effects of Nicotine and PDGF, respectively and the effect of PDGF presence of nicotine on human gingival fibroblasts and periodontal ligament cells. The results were as follows : 1. In the cell activities of human gingival fibroblasts and periodontal ligament cells were similar or decreased to control value at 1st day. At 2nd day, cellular activities of both group were increased to control value. At 3rd day, cellular activities of both group were returned to the control value. 2. In the cell activities of PDGF on human gingival fibroblasts and periodontal ligament cells, cell activities significantly increase from control group on periodontal ligament cells compared to gingival fibroblast group at 3rd day. 3. In the cell activities of PDGF and nicotine combined application on human gingival fibroblasts and periodontal ligament cells, it seems likely that the nicotinic effect of gingival fibroblasts were higher than periodontal ligament cells and the PDGF effect of periodontal ligament cells were higher than gingival fibroblasts. This results suggested that PDGF might stimulate the selective growth on periodontal ligament cells.

  • PDF

황련과 Centella asiatica 추출물이 치은 섬유모세포에 미치는 영향 (The effect of Rhizoma coptidis and Centella asiatica extracts on human gingival fibroblasts)

  • 유형근
    • Journal of Periodontal and Implant Science
    • /
    • 제26권3호
    • /
    • pp.681-688
    • /
    • 1996
  • Periodontal regeneration requires the migration and proliferation of gingival fibroblasts and periodontal ligament cells. These cellular events are influenced and regulated by growth factors and some drugs. The purpose of this study is to examine the effect of Rhizoma coptidis and Centella asiatica extracts on human gingival fibroblasts. Gingival fibroblasts were primarily cultured from extracted premolar with non-periodontal diseases. Cells were cultured with ${\alpha}-MEM$ at $37^{\circ}C$, 5% $CO_2$, 100% humidity incubator for 2 or 3 days, as a measure of cell proliferation potential, it was examined that the DNA synthesis using $[^3H]-thyrnidine$ incorporation, the cell numbers (with or without dye), and cell viabilities. Rhizoma coptidis is increased the proliferation of gingival fibroblasts at concentration of $10^{-9}g/ml$, but Centella asiatica is decreased the proliferation at all concentrations. This study demonstrated that Rhizoma coptidis is a potential mitogen for human gingival fibroblasts in vitro, and we can expect the usefulness of this drug in periodontal regeneration.

  • PDF

니코틴이 배양인체 치은섬유모세포 및 치주인대세포의 활성에 미치는 효과 (THE EFFECTS OF NICOTINE ON HUMAN GINGIVAL FIBROBLAST & PERIODONTAL LIGAMENT CELLS IN VITRO)

  • 공영환;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제25권2호
    • /
    • pp.181-191
    • /
    • 1995
  • The ability of fibroblasts attach to teeth is of paramount imporance in re-establishing the lost connective tissue attachment after periodontal therapy. Tobacco contains a complex mixture of substances including nicotine. various nitrousamines, trace elements. and a variety of poorly characterized substances. The effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This study examined the effect of nicotine, a major component of the particulate phase of tobacco smoke, on human gingival fibroblasts and periodontal ligament cells attachment to tissue culture surfaces and cellular activity of human gingival fibroblasts and periodontal ligament cells. Pooled human gingival fibroblasts made from extraction of 3rd molar were utilized between passage 4 and 5 and plated in 96 well plate at 20,000 cells per well. Cell number were determined using 3-(4,5-dimethylthiazole-2-y)2,5-diphenyltetrazolium bromide(MTI) , which is reflection of mitochondrial dehydrogenase activity. The concentration of nicotine used were 0.025, 0.05, 0.1, 0.2 and $0.4{\mu}M$, the average serum concentration for a smoker being approximately $0.1{\mu}M$. The results were as follows : 1. Attachment effects of nicotine on human gingival fibroblasts and periodontal ligament cells Excepts of $0.4{\mu}M$, the effects on attachment with increasing numbers of cells attaching with increasing nicotine concentrations, compared to control group. But over the 60min, return to control value. 2. The effect of cellular activity on human gingival fibroblasts and periodontal ligament cells. The cellular activity of human gingival fibroblasts and periodontal ligament cells were similar or decrease to control value at 1st incubation day. At 2nd incubation day, 0.05, 0.1, 0.2, $0.4{\mu}M$ concentrations were statistically different from control value on gingival fibroblasts group. But at 3rd incubation day, cellular activities of all experimental group were significantly decrease than control group.

  • PDF

치은섬유아세포의 복제노화가 세포주기 조절에 미치는 영향 (Effects of Replicative Senescence on the Cell Cycle Regulation in Human Gingival Fibroblasts)

  • 박영채;양대승;김재호;김현아;유용욱;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제31권1호
    • /
    • pp.135-148
    • /
    • 2001
  • Gingival fibroblasts are major cellular component of gingiva. However, the molecular mechanisms of senescence of human gingival fibroblasts are unknown. Human fibroblasts undergo replicative senescence in vitro after a limited number of population doublings. A reduced rate of proliferation is a prominent phenomenon observed in senescent fibroblasts. This phenomenon is controled by cell cycle regulatory proteins. The purpose of present study was to investigate the effect of replicative senescence on cell cycle progression and to find out its molecular mechanisms in human gingival fibroblasts. Replicative senescence of gingival fibroblasts were induced by subsequent cultures that were repeated up to 18 passage. In the present study, I examined change of cell proliferation, cell activity, cell viability and cell cycle progression during the replicative process. Also, I examined expression of cell cycle regulatory proteins which was estimated by western blot analysis. Cell proliferation, cell activity and cell viability of gingival fibroblasts were notably decreased with increase of population doubling level(PDL). S phase was decreased and G1 phase was increased with increase of PDL. Western blot analysis showed that levels of P16, p21 and p53 of senescent gingival fibroblasts(PDL41, PDL58) were higher than young fibroblasts(PDL27) and cdk4 were lower than young fibroblasts(PDL27). In conclusion, these results suggest that proliferative function of human gingival fibroblasts may be decreased by replicative senescence and its molecular mechanisms may be activatied with p16, p21, p53 and pRB, and repressed wtih cdk4.

  • PDF

수종의 저장용액에서의 치은섬유모세포 생존율의 비교연구 (Comparative study on survival rate of human gingival fibroblasts stored in different storage media)

  • 이희수;임유선
    • 한국치위생학회지
    • /
    • 제12권4호
    • /
    • pp.733-739
    • /
    • 2012
  • Objectives : To Compare the degree of survival rate of gingival fibroblasts, which is concerned with teeth adherence based on the type of avulsed tooth's storage solution. Methods : Different media gingival fibroblasts were stored in Dulbecco's modified Eagle's medium(DMEM), Hank's balanced salt solution(HBSS), milk, saline, and green tea in for 1, 2, 3 hours. And, MTT assay was conducted to compare survival rate of human gingival fibroblasts. Results : 1. The survival rate of gingival fibroblasts in DMEM and HBSS was higher than thoes in other storage media( Milk> Saline> Green tea). 2. The survival rate of gingival fibroblasts in milk, saline and green tea decreased as time passed. 3. Because of low osmotic pressure, green tea showed decrease of survival rate of gingival fibroblasts. Conclusion : DMEM and HBSS were the most effective storage media for gingival fibroblast. Among milk, saline, green tea, milk is most effective storage media for keeping gingival fibroblasts. Milk is recommended for storage media of avulsed tooth for keeping viability of cells.

Staurosporine Induces ROS-Mediated Process Formation in Human Gingival Fibroblasts and Rat Cortical Astrocytes

  • Lee, Han Gil;Kim, Du Sik;Moon, Seong Ah;Kang, Jeong Wan;Seo, Jeong Taeg
    • International Journal of Oral Biology
    • /
    • 제40권1호
    • /
    • pp.27-33
    • /
    • 2015
  • In the present study, we investigated the effect of staurosporine on the formation of cellular processes in human gingival fibroblasts and rat astrocytes. Staurosporine caused a rapid induction of process formation in human gingival fibroblasts and rat astrocytes in a concentration dependent manner. The process formation of human gingival fibroblasts and rat astrocytes was prevented by the pretreatment with N-acetylcysteine, suggesting that staurosporine-induced ROS production was responsible for the process formation. Colchicine, a microtubule depolymerizing agent, inhibited the staurosporine-induced process formation, whereas cytochalasin D, an actin filament breakdown agent, failed to suppress the formation of cellular processes. This result indicated that polymerization of microtubule, and not actin filament, was responsible for the formation of cellular processes induced by staurosporine. In support of this hypothesis, Western blot analysis was conducted using anti-tubulin antibody, and the results showed that the amount of polymerized microtubule was increased by the treatment with staurosporine while that of depolymerized beta-tubulin in soluble fraction was decreased. These results indicate that staurosporine induces ROS-mediated, microtubule-dependent formation of cellular processes in human gingival fibroblasts and rat astrocytes.

Effect of Ferulic Acid on Cell Viability and Cell Adhesion Activity in Normal Human Gingival Fibroblasts

  • Lee Joo-Hyun;Jin Byung-Jo;Son Il-Hong;Han Du-Seok
    • 대한의생명과학회지
    • /
    • 제10권3호
    • /
    • pp.269-273
    • /
    • 2004
  • This study was designed to investigate the effect of ferulic acid on cell viability and cell adhesion activity in normal human gingival fibroblasts. The cell viability and cell adhesion activity of ferulic acid was measured by MTT assay or XTT assay, respectively, after normal human gingival fibroblasts were treated with or without ferulic acid for 48 hours. The cell viability of ferolic acid on normal human gingival fibroblasts did not show any decreasement by MTT assay and also, cell adhesion activity did not decreased by XTT assay, respectively, compared with control after cells were treated with various concentrations of ferolic acid for 48 hours. MTT/sub 50/ and XTT/sub 50/ were 2,130.0 μM and 1,773.7 μM ferolic acid, respectively. These results suggest that ferolic acid is non-toxic to normal human gingival fibroblasts by showing no significant differences in the cell viability and the adhesion activity compared with control by colorimetric assay.

  • PDF

Lipopolysaccharide로 자극시킨 방사선 조사 치은 섬유아 세포에서 granulocytemacrophage colony-stimulating factor와 transforming growth factor-${\beta}1$ 생성 (PRODUCTION OF GM-CSF AND TGF-${\beta}1$ IN IRRADIATED HUMAN GINGIVAL FIBROBLASTS CULTURED WITH LIPOPOLYSACCHARIDE)

  • 김홍식;이성근;김광혁;김욱규;김종렬;정인교;양동규
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권3호
    • /
    • pp.169-174
    • /
    • 2002
  • Purpose: Irradiation in the oral cancer patients causes early and late complications such as intraoral mucositis and fibrosis, with a various expression of GM-CSF and TGF-${\beta}1$. The purpose of this study was to investigate the production of GM-CSF and TGF-${\beta}1$ by the irradiated human gingival fibroblasts cultivated with lipopolysaccharide. Materials and Methods: Irradiated (total dose, 60 Gy) human gingival fibroblasts were incubated with LPS. Culture supernatants that were collected at 24, 48, and 72 hours were assessed for GM-CSF and TGF-${\beta}1$ by enzyme-linked immunosorbent assay. Results: 1. GM-CSF production in nomal gingival fibroblasts was increased with incubation time, but decreased with incubation time in irradiated gingival fibroblasts. GM-CSF production in both normal and irradiated gingival fibroblasts induced with LPS was higher than the control. 2. TGF-${\beta}1$ production in normal gingival fibroblasts was decreased after 24 hours, but, it was increased until 48 hours in irradiated gingival fibroblasts. TGF-${\beta}1$ production in normal gingival fibroblasts exposed with LPS was higher than the control. Conversely, It was lower than the control in irradiated gingival fibroblasts exposed with LPS. Conclusion: This indicates that irradiation in gingival fibroblasts may play an important role in radiation-induced intraoral mucositis and fibrosis. However, LPS decreases the production of TGF-${\beta}1$ in the irradiated gingival fibroblasts.

치주인대세포 및 치은섬유아세포의 DNA 합성능에 대한 b-Fibroblast growth factor의 영향 (The Effect of the Basic Fibroblast Growth Factor on Proliferation Rate of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts)

  • 조영준;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제26권2호
    • /
    • pp.414-428
    • /
    • 1996
  • The use of basic fibroblast growth factor which function as potent biologic mediators regulating numerous activities of wound healing has been suggested for the promotion of periodontal regeneration. The mitogenic effects of basic fibroblast growth factor on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of 5-Bromo-2'deoxy-uridine into DNA of the cells in a dose -dependent manner. The cells which were prepared were the primary cultured gingival fibroblasts and periodontal ligament cells from human the fourth or sixth subpassages were used in the experiments. The cells which were seeded DMEM contain 10% FBS. The added concentrations of basic fibroblast growth factor were 0.1, 1, 10, 50, $l00{\eta}g/ml$ and basic fibroblast growth factor were added to the quiescent cells for 24 hours, 48 hours and 72 hours. They were labeled with $10{\mu}l/200{\mu}l$ 5Bromo-2'-deoxy-uridine for the last 6 hours of each culture. The results of the five determinants were presented as mean and S.D.. The results were as follows. : The DNA synthetic activity of human gingival fibroblasts was increased dose dependently by basic fibroblast growth factor at 24 hours, 48 hours and 72 hours. The similar mitogenic effects were at the 24 and 48 hours of basic fibroblast growth factor, but the DNA synthetic activity of human gingival fibroblasts generally decreased at 72 hours. The DNA synthetic activity of human periodontal ligament cells was increased dose dependently to $50{\eta}g/ml$ by basic fibroblast growth factor at 24, 48 and 72 hours, but the DNA synthetic activity decreased at $l00{\eta}g/ml$ of each hour. Generally the maximum mitogenic effects were at the 48 hours application of basic fibroblast growth factor. The DNA synthetic activity of human periodontal ligament cells generally decreased lower at 72 hours than at 24, 48 hours the application of basic fibroblast growth factor. In the comparison of DNA synthetic activity between human gingival fibroblasts and human periodontal ligament cells, human periodontal ligament cells had slightly higher proliferation activity than human gingival fibroblasts for a longer time at the high dosage of the basic fibroblast growth factor.In conclusion, basic fibroblast growth factor have important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, and thus may be useful for clinical applications in periodontal regenerative procedures.

  • PDF

치주인대세포 및 치은섬유아세포의 증식능에 대한 Epidermal growth factor의 영향 (The Effect of EGF on Proliferation Rate of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts)

  • 김선우;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제26권4호
    • /
    • pp.841-858
    • /
    • 1996
  • Epidermal growth factor(EGF) is one of polypeptide growth factors. EGF has been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. The purposes of this study is to evaluate the effects of EGF on the human periodontal ligament cells and human gingival fibroblast cells that promote regeneration of periodntal tissue. The mitogenic effects of epidermal growth factor on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of 5-Bromo-2'-deoxy-uridine into DNA of the cells in a dose dependent manner. The prepared cells were the primary cultured gingival fibroblast and periodontal ligament cells from humans, the fourth or sixth subpassages were used in the experiments. Cells were seeded in DMEM containing 10% FBS. 1, 10, 50, 100, $200{\eta}g/ml$ and epidermal growth factor were added to the quiescent cells for 24 hours, 48 hours and 72 hours. They were labeled with $10\{mu}l/200{\mu}l$ 5-Bromo-2'-deoxy-uridine for the last 6 hours of each culture. The results of the five determinants were presented as mean and S.D.. The results were as follows : The DNA synthetic activity of human gingival fibroblasts were increased dose dependently by epidermal growth factor at 24 hours, 48 hours and 72 hours. The mitogenic effects were similar at the 24 and 48 hours of epidermal growth factor, but the DNA synthetic activity of human gingival fibroblasts generally decreased at 72 hours. The DNA synthetic activity of human periodontal ligament cells were increased dose dependently by epidermal growth factor at 24 hours but the DNA synthetic activity decreased at $200{\eta}g/ml$ of each hour. Generally the maximum mitogenic effects were observed at the 48 hours application of epidermal growth factor. The DNA synthetic activity of human periodontal ligament cells generally decreased lower at 24, 72 hours than at 48 hours the application of epidermal growth factor. In the comparison of DNA synthetic activity between human gingival fibroblasts and human periodontal ligament cells, human periodontal ligament cells had slightly higher proliferation activity than human gingival fibroblasts for a longer time at the high dosage of the epidermal growth factor. In conclusion, epidermal growth factor have important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, and thus may be useful for clinical applications in periodontal regenerative procedures.

  • PDF