• Title/Summary/Keyword: Human dermal fibroblasts

Search Result 207, Processing Time 0.03 seconds

Effect of nitric oxide on the expression of matrix metalloproteinases by the UV irradiated human dermal fibroblasts

  • Taeboo Choe;Lee, Bumchun;Park, Inchul;Seokil Hong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2002
  • The production of matrix matalloproteinases(MMPs) by the UV irradiated skin fibroblast and the degradation of extracellular matrix(ECM) by these enzymes is known as one of the main reasons of photoaging. Recently, Fisher group showed that the MMP expression is mainly regulated by the mitogen-activated protein(MAP) kinas family, such as extracellular signal-regulated kinase(ERK), c-Jun amino-terminal kinase(JNK) and p38, each of which forms a signaling pathway. In this work we first examined the effect of nitric oxide (NO) on the production of MMP-1 and MMP-2 by the human dermal fibroblasts (HDFs). NO is a multifunctional messenger molecule generated from L-arginine and involved in many kinds of signaling pathway. We found that the treatment of HDF with NO donor, sodium nitroprusside (SNP) enhanced the expression of MMPs with or without UV irradiation and the treatment with nitric oxide synthase (NOS) inhibitors resulted in the significant decrease of MMPs production. From these results, we concluded that the production of MMPs by the UV irradiated HDF is regulated through the signaling pathway involving NO and cyclic GMP.

Pueraria montana var. lobata Root Extract Inhibits Photoaging on Skin through Nrf2 Pathway

  • Heo, Hee Sun;Han, Ga Eun;Won, Junho;Cho, Yeonoh;Woo, Hyeran;Lee, Jong Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Pueraria montana var. lobata is a bioactive substance with various beneficial health effects and has long been extensively used as a traditional medication for the treatment of fever, acute dysentery, diabetes, and cardiovascular diseases in Northeast Asian countries. The purpose of this study was to evaluate the cytoprotective activity of Pueraria montana var. lobata ethanol extract (PLE) for ultraviolet B (UVB)-induced oxidative stress in human dermal fibroblasts (HDF). It was hypothesized that PLE treatment ($25-100{\mu}g/ml$) would reduce intracellular reactive oxygen species (ROS) levels as well as increase collagen production in UVB-irradiated HDF. The results confirmed this theory, with collagen production increasing in the PLE treatment group in a dose-dependent manner. In addition, regulators of cellular ROS accumulation, including HO-1 and NOQ-1, were activated by Nrf2, which was mediated by PLE. Hence, intracellular levels of ROS were also reduced in the PLE treatment group in a dose-dependent manner. In conclusion, PLE increases collagen production and maintains hyaluronic acid (HA) levels in human dermal fibroblasts exposed to UVB-irradiation, thereby inhibiting photoaging.

Effect of Antioxidation and Inhibition of Matrix Metalloproteinase-1 from Ligularia fischeri (곰취의 항산화와 UVA에 의한 MMP-1 발현 저해효과)

  • Na, Young;Kim, Jin-Hwa;Sim, Gwan-Sub;Lee, Bum-Chun;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.129-134
    • /
    • 2006
  • In this study, we examined the effects of antioxidant, lipid peroxidation inhibition and suppression of UVA-induced MMP-1 expression in human dermal fibroblasts. Ligularia fischeri extract showed free radical scavenging effect by 82.3% at 5 mg/mL and superoxide radical scavenging effect by 79.3% at 5 mg/mL in the kanthine/xanthine oxidase system, respectively. At the concentration of $500{\mu}g/mL$, L. fischeri extract showed 97% inhibition on lipid peroxidation of linoleic acid. UVA induced MMP expression in human dermal fibroblasts was reduced 35% by treatment with $100{\mu}g/mL$ of L. fischeri extract. These results suggest that L. fischeri extract can be used for an anti-aging agent by antioxidation, lipid peroxidation inhibition and reducing UVA-induced MMP-1 production.

Fabrication of Micro Patterned Fibronectin for Studying Adhesion and Alignment Behavior of Human Dermal Fibroblasts

  • Lee, Seung-Jae;Son, Young-Sook;Kim, Chun-Ho;Choi, Man-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.348-356
    • /
    • 2007
  • The aim of this study was to fabricate a submicro-and micro-patterned fibronectin coated wafer for a cell culture, which allows the positions and dimensions of the attached cells to be controlled. A replica molding was made into silicon via a photomask in quartz, using E-beam lithography, and then fabricated a polydimethylsiloxane stamp using the designed silicon mold. Hexadecanethiol $[HS(CH_2){_{15}}CH_3]$, adsorbed on the raised plateau of the surface of polydimethylsiloxane stamp, was contact-printed to form self-assembled monolayers (SAMs) of hexadecanethiolate on the surface of an Au-coated glass wafer. In order to form another SAM for control of the surface wafer properties, a hydrophilic hexa (ethylene glycol) terminated alkanethiol $[HS(CH_2){_{11}}(OCH_2CH_2){_6}OH]$ was also synthesized. The structural changes were confirmed using UV and $^1H-NMR$ spectroscopies. A SAM terminated in the hexa(ethylene glycol) groups was subsequently formed on the bare gold remaining on the surface of the Aucoated glass wafer. In order to aid the attachment of cells, fibronectin was adsorbed onto the resulting wafer, with the pattern formed on the gold-coated wafer confirmed using immunofluorescence staining against fibronectin. Fibronectin was adsorbed only onto the SAMs terminated in the methyl groups of the substrate. The hexa (ethylene glycol)-terminated regions resisted the adsorption of protein. Human dermal fibroblasts (P=4), obtained from newborn foreskin, only attached to the fibronectin-coated, methyl-terminated hydrophobic regions of the patterned SAMs. N-HDFs were more actively adhered, and spread in a pattern spacing below $14{\mu}m$, rather than above $17{\mu}m$, could easily migrate on the substrate containing spacing of $10{\mu}m$ or less between the strip lines.

Growth Factors Supplementation in Culture Medium Leads to Active Proliferation of Porcine Fibroblasts

  • Kim, Bella;Ko, Na-Young;Hwang, Seong-Soo;Im, Gi-Sun;Kim, Dong-Hoon;Park, Jin-Ki;Ryoo, Zae-Young;Oh, Keon-Bong
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.301-306
    • /
    • 2011
  • Fibroblasts of large animals are easy to isolate and to maintain in vitro culture. Thus, these cells are extensively applied to donor cell for somatic cell nuclear transfer, and to substrate cells to generate induced pluripotent stem cells after transfection of requited genes to be essentially required for direct reprogramming. However, limited mitotic activity of fibroblasts to differentiate along a terminal lineage becomes restrictive for their versatile application. Recently, commercial culture medium and systems developed for primary cells are provided by manufactures. In this study, we examined whether one of the systems developed for primary fibroblasts of human are effective on porcine ear skin fibroblasts. To this end, we performed proliferation assay after five days culture in vitro of porcine fibroblasts in medium DMEM, which is generally used for fibroblasts culture, and medium M106 for human dermal fibroblasts, supplemented with various concentrations of FBS and LSGS contained mainly growth factors, respectively. Consequence was that presence of 15% FBS and 0.1 ${\times}$ concentrations of LSGS in DMEM showed most active proliferation of porcine fibroblasts.

The Phytoestrogenic Effect of Daidzein in Human Dermal Fibroblasts (피부 섬유아세포에서 다이드제인의 파이토에스트로겐 효과)

  • Kim, Mi-Sun;Hong, Chan Young;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.279-287
    • /
    • 2014
  • Estrogen deficiency results in a reduction of skin quality and function in postmenopausal women. Over the past decade, many studies have supported that estrogen provides anti-aging effects as a result of the ability of estrogen to prevent skin collagen decline, restore skin elasticity, and increase skin hydration in postmenopausal women skin. Due to their structural similarity with estrogen, isoflavones have been called phytoestrogens. Photoprotective effects of isoflavones are well established while their estrogenic-like activities are not fully understood in human skin. In this study, we investigated whether daidzein, an effective isoflavone, has phytoestrogenic activity and induces transcriptional change of extracellular matrix components in dermal fibroblasts. We examined the luciferase activity of daidzein and ${\beta}$-estradiol using transiently transfected NIH3T3-ERE cells. The estrogenic receptor-dependent transcriptional activity was increased in a dose-dependent manner when treated with daidzein, with a maximum of 2.5-fold induction at $10{\mu}g/mL$ of daidzein compared with non-treated control. In addition, daidzein significantly in creased the expressions of collagen type I, collagen type IV, elastin, and fibrillin-1 in human dermal fibroblasts. By comparing with the effects of ${\beta}$-estradiol through out all the experiments, we confirmed that daidzein had estrogenic activity and function in fibroblasts. These results suggest that daidzein-based application, having both photoprotective and phytoestrogenic effects, may be a powerful approach for skin anti-aging of postmenopausal women.

Bacterial cellulose matrix and acellular dermal matrix seeded with fibroblasts grown in platelet-rich plasma supplemented medium, compared to free gingival grafts: a randomized animal study

  • Abraao Moratelli Prado;Cimara Fortes Ferreira;Luismar Marques Porto;Elena Riet Correa Rivero;Ricardo de Souza Magini;Cesar Augusto Magalhaes Benfatti;Jair Rodriguez-Ivich
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.1
    • /
    • pp.25-36
    • /
    • 2024
  • Purpose: Mucogingival defects (MGDs), such as dental root recessions, decreased vestibular depth, and absence of keratinized tissues, are commonly seen in dental clinics. MGDs may result in functional, aesthetic, and hygienic concerns. In these situations, autogenous soft tissue grafts are considered the gold-standard treatment. This study compares the healing process of free gingival grafts (FGGs) to bacterial cellulose matrix (BCM) and human acellular dermal matrix (ADM) seeded with fibroblasts from culture supplemented with platelet-rich plasma in a rat model. Methods: Surgical defects were made in rats, which received the following treatments in a randomized manner: group I, negative control (defect creation only); group II, positive control (FGG); group III, BCM; group IV, BCM + fibroblasts; group V, ADM; and group VI, ADM + fibroblasts. Clinical, histological, and immunological analyses were performed 15 days after grafting. Clinical examinations recorded epithelium regularity and the presence of ulcers, erythema, and/or edema. Results: The histological analysis revealed the degree of reepithelization, width, regularity, and presence of keratin. The Fisher exact statistical test was applied to the results (P<0.05). No groups showed ulcers except for group I. All groups had regular epithelium without erythema and without edema. Histologically, all groups exhibited regular epithelium with keratinization, and myofibroblasts were present in the connective tissue. The groups that received engineered grafts showed similar clinical and histological results to the FGG group. Conclusions: Within the limitations of this study, it was concluded that BCM and ADM can be used as cell scaffolds, with ADM yielding the best results. This study supports the use of this technical protocol in humans.

Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin

  • Hwang, Eunson;Park, Sang-Yong;Yin, Chang Shik;Kim, Hee-Taek;Kim, Yong Min;Yi, Tae Hoo
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • Background: Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. Methods: Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. Results: In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. Conclusion: These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.

Application of Human Dermal Fibroblast and Keratinocyte on Allogenic Dermis(AlloDerm®) (동종진피에 사람진피 섬유모세포와 각질세포를 적용한 인공피부의 실험적 제작)

  • Oh, Jung Chul;Lim, Yeung Kook;Jeong, Jae Ho
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.601-605
    • /
    • 2006
  • Purpose: Large skin defect by various causes, should be covered by autologous skin graft. But, the donor site of autologous skin graft is limited and leaves permanent donor scar and contracture. There have been our trial to engineer artificial skin using allogenic dermis (AlloDerm) with basement membrane. Methods: Dermal and epidermal layer were separated by immersing in dipase solution for 30 minutes, and the separated layers were treated with 0.05% trypsin for 10 minutes. And then each layer was cultivated to fibroblasts and keratinocytes on a culture medium. Fibroblasts were first penetrated into basement membrane of allogenic dermis facing down, then allogenic dermis was flipped over to face up and keratinocytes were transplanted to allogenic dermis. Results: Observing artificial skin fabricated in vitro, we found following: 1) The artificial skin opened in air for 5 days formed epidermal layer. In dermal layer, fibroblast was distributed evenly among all. 2) The artificial skin opened in air for 30 days formed thicker and thicker, and it formed basement membrane, spinous and granular layers. PAS stain to confirm existence of basement membrane showed positive reaction. 3) Cytokeratin 10 stain to confirm the formation of epidermal layer showed positive reaction. 4) The formation of thick keratin, lamellar body and desmosome similar to human skin were observed in result of an electron micrograph. Conclusion: As a result of research, the structure seen in normal skin such as rete ridge, is found in reproduced artificial skin. This type of artificial skin can be used as a useful model for investigating skin disease and for clinical application also.

Oral Administration of Lactobacillus plantarum HY7714 Protects Hairless Mouse Against Ultraviolet B-Induced Photoaging

  • Kim, Hyun Mee;Lee, Dong Eun;Park, Soo Dong;Kim, Yong-Tae;Kim, Yu Jin;Jeong, Ji Woong;Jang, Sung Sik;Ahn, Young-Tae;Sim, Jae-Hun;Huh, Chul-Sung;Chung, Dae Kyun;Lee, Jung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1583-1591
    • /
    • 2014
  • Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVB-induced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.